Seismic anisotropy of the upper mantle beneath Thailand: Tectonic setting constrained by shear-wave splitting analysis

Wisawet Wongwai1, Passakorn Pananont1*, Eric Sandvol2, and Kevin Furlong3

1 SEIS-SCOPE, Department of Earth Sciences, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 Thailand
2 Department of Geological Sciences, University of Missouri, Columbia, Missouri, 65211 United States of America
3 Department of Geosciences, The Pennsylvania State University, Pennsylvania, 16802 United States of America

Received: 3 May 2019; Revised: 12 July 2019; Accepted: 19 July 2019

Abstract

The tectonic setting of the lithosphere and upper mantle underneath Thailand varies and changes substantially over short distances. We have mapped these variations using shear wave splitting (SWS) analysis. We have determined the shear wave splitting fast polarization azimuth (Φ) and delay time (δt) using the grid search method with the assumption of a flat, single-layer upper-mantle anisotropy. The data set was constructed using 117 teleseismic earthquakes with magnitudes greater than 5.8, and epicentral distances between 80 and 180 degrees that occurred between 2009 and 2013, using earthquake information from USGS Comprehensive Earthquake Catalog. This resulted in 425 observations with clear P-wave arrivals, SKS, and SKKS phases. Our results show that 70% of the stations (15 of 22 stations) on the Shan–Thai terrane have N-S fast orientations and an average delay time of 0.7±0.2 seconds. 100% of the stations (14 stations) located on the Indochina terrane have dominantly E-W fast orientations and an average delay time of 0.8±0.2 seconds. This point supports the interpretation that on a lithospheric scale, Thailand consists of two major terranes.

Keywords: Thailand, tectonic setting, shear-wave splitting

1. Introduction

Southeastern Asia is built on a suite of continental blocks that include South China (Yangtze and Cathaysia), Indochina, Simao, Shan–Thai (or Sibumasu) and West Burma (Metcalfe, 2002). These blocks are separated by narrow sutures, in which dismembered ophiolites or deep-sea sediments have been observed, possibly representing remnants of different Tethyan basins (Hutchison, 1975, 1989, 1993; Sengör, 1984). Previous studies of the tectonic and geologic evolution of Thailand conclude that Thailand consists of the Shan–Thai (ST) and Indochina (IC) microcontinents or terranes welded together by the subsequently deformed Nan Suture, Figure 1(a). During the Middle Triassic, the Shan–Thai terrane sutured nearly simultaneously to Indochina and to South China, as part of the Indosinian Orogeny, with Indochina underthrusting the Shan–Thai terrane (Achache, Courtillot, & Besse, 1983; Barr & Macdonald, 1978, 1991; Bunopas, 1981; Bunopas & Vella, 1983, 1992; Chaodumrong & Burrett, 1997; Chaodumrong, Burrett, 1997; Chaodumrong, Xiangdong, & Shuzhong, 2007; Charusiri, Clark, Farrar, Archibald, & Charusiri, 1993; Charusiri, Daorerk, Archibald, Hisada, & Ampaiwan, 2002; Fortey & Cocks, 1998; Hirsch, Ishida, Kozai, & Meesook, 2006; Hutchison & Charles, 2010; Konigshof et al., 2012; Metcalfe, 2011, 2013). These two microcontinents are sepa-
rated by the Nan suture or Nan-Uttaradit suture in the north and the Srakaeo suture in the southeast, which is a volcanic arc terrane. The Shan-Thai terranes (ST) are situated in west Yunnan in south China, eastern Myanmar, and the entire western half of Thailand and South-West Sumatra. The Indochina terrane (IC) covers south China, Laos, Vietnam, Cambodia, and the eastern half of Thailand and east Malaya (Bunopas, 1981; Bunopas & Vella, 1983; Charusiri et al., 2002; Ferrari, McWilliams, Canuto, & Dubovikov, 2008; Sone & Metcalfe, 2008; Ueno & Charoentitirat, 2011), Figure 1 (a).

Several recent geophysical studies have focused on determining the crustal structure and properties of Thailand using teleseismic receiver functions. Results of these studies indicate that the crustal thickness beneath the Indochina terrane (IC) is thicker than beneath the Shan-Thai terrane (ST), varying between 33–45 km and 25–33 km, respectively. In addition, in general, the \(V_P/V_S \) ratio is relatively high (i.e. more than a typical crust value of 1.7, Paul et al., 2001) in the Indochina terrane (IC) and lower (\(V_P/V_S \) ratio of 1.7 or lower) in the Shan-Thai terrane (ST) (Noisagool, Boonchaisuk, Pornsopin, & Siripunvaraporn, 2014; Tadapansawat, Chaisri, & Naunnin, 2012; Wongwai & Naunnin, 2010, 2011; Wongwai, Pananont, & Pornsopin, 2013; Yu et al., 2017; Yu, Shi, & Yang, 2016).

Yu et al. (2018) used teleseismic shear-wave splitting analysis (SWS) to interpret the characteristics of mantle flow beneath the Indochina peninsula. Their 409 SWS measurements using 29 regional stations (12 stations located in Thailand) show that upper mantle anisotropy beneath most of their study area is dominantly characterized by E-W orientation of the faster shear wave. They infer a mantle upwelling as the cause of their observed azimuthal anisotropy beneath the southern part of the Peninsula. In addition of using the result of SWS measurement to characterize the mantle flow direction, it can be used to delineate the anisotropy of the upper mantle or at lithospheric scale as well since the SWS is a measurable consequence of shear waves that traverses a region with a preferred orientation of minerals either from mantle flow or a lattice preferred orientation (LPO) in the mantle (i.e. Long & Silver, 2009).

In this study, we present new SWS measurement to constrain the tectonic setting of Thailand by imaging the mantle anisotropy and identify specific ‘fabric’ orientations and also determine the boundaries between the different terranes at upper mantle depths. We have used 36 seismic stations operated by the Earthquake Observation Division, Thai Meteorological Department with a more spatially complete coverage of Thailand. This allows us to determine SWS behavior at a higher spatial resolution than previously possible. This work is the first step in identifying and constraining the pattern of upper mantle structure and fabric of Thailand. This will provide an important data set for future studies of what is causing the differences between the two terranes.

2. Materials and Methods

2.1 Data collection

The 36 seismic stations, Figure 1 (a), managed by the Earthquake Observation Division, Thai Meteorological Department, are equipped with three-component seismometers with frequency responses from 1s-50 Hz, 40s-50 Hz and 120s-50 Hz (Nanometrics Trillium120P, Trillium40 sensors with a
Taurus digitizer recorded continuously at 100 samples per second and Geotech KS2000 and S13 with a Smart24 digitizer recorded continuously at 50 samples per second). We analyze data from 117 teleseismic earthquakes occurring between 2009 and 2013 (48 months) with magnitudes greater than 5.8, and epicentral distances between 80 and 180 degrees from earthquake information of the United States Geological Survey Comprehensive Earthquake Catalog, producing 425 observations with clear P-wave arrivals, SKS, and SKKS phases, Figure 2 (b).

2.2 SWS measurements

The principle cause of observed seismic anisotropy of the Earth’s upper mantle is produced by the preferred orientation of olivine minerals in the upper mantle, that can be produced by mantle flow or shear deformation. (Backus, 1962; Crampin, 1984; Kendall et al., 2006; Nicolas & Chris tensen, 1987). The Shear wave splitting technique (SWS) has been widely adopted to use core-transiting phases such as SKS, SKKS, PKS to determine receiver-side upper mantle anisotropy (e.g., Bacon, Barnett, & Scattergood, 1980; Chang, Ferreira, Ritsema, Heijst, & Woodhouse, 2014; Lei, Xie, Fan, & Santosh, 2013; Liu & Gu, 2012; Manea, Manea, Ferrari, Orozco-Esquível, & Kostoglodov, 2017; Nowacki, Wookey, & Kendall, 2011; Romanowicz & Wenk, 2017; Singh, Singh, & Kendall, 2015; Silver & Chan, 1991; Tommasi & Vauzech, 2015; Vauzech, Tommasi, & Mainprice, 2012; Vinnik, Kostoglodov, & Makeyeva, 1984; Wu, Kuo-Chen, & McIntosh, 2014). The SKS and SKKS phases are especially well-suited for shear wave splitting measurements because the core-mantle conversion from P (K in core) to S removes any effects from anisotropy on the source side, and produces a radially-polarized shear wave on the receiver side (Olive, Pearce, Ronenroy, & Behn, 2014). A main assumption in measuring splitting parameters is that the mantle being sampled beneath a station has a coherent fabric or flow orientation on length scales that are comparable to or larger than the station spacing.

A split shear wave is defined by two parameters: the polarization direction of the first arrival phase (fast azimuth, ϕ) and the time delay between the fast and slow polarizations when the shear wave travels through anisotropic materials (delay time, δt, i.e. Sandvol et al., 2003). We applied the grid search method of Silver and Chan (1991) for SWS measurement under the assumption of single-layer anisotropy with a vertical symmetry axis. The delay time is proportional to the product of the thickness of the anisotropic layer and the strength of anisotropy. In our study we used high signal-to-noise SKS (249 phases) and SKKS (125 phases) core phases based on the AK135 velocity model (Kennett, Engdahl, & Buland, 1995) from 117 events, and 1,275 waveforms. Each waveform was analyzed in a window beginning 15 seconds before the core phase arrival and ending after one period of onset of the core phases. Each phase that displayed the elliptical horizontal particle motion indicative of shear-wave splitting was used in this study. After determining parameters that minimized the tangential component energy, we checked to insure that the corrected seismograms had an approximately linear particle motion.

Figure 2. Example of SKS seismic phase on 3-components teleseismic data (M 6.6, depth=545 km) occurred at South of Fiji Islands (USGS) recorded by different seismometers. (a) Station LAMP (Geotech S13: Short Period, 1Hz), (b) Station KRDT (Nanometrics Trillium40: 40s), (c) Station CMAI (Geotech KS2000M: 120s) and (d) Station MHIT (Trillium120: 120s). Note that although the S13 is a short period (1Hz) seismometer, the SKS phase is well observed.
Using the Φ estimate determined following the procedure above, the SKS wave is rotated into its fast vs. slow components, Figure 3(b). These components are time-shifted by the δt estimate to correct for the offset. This should yield very similar waveforms (possibly of opposite signs) on the corrected fast and slow components and provides a helpful diagnostic tool for measurement quality, Figure 3(c). Finally, the splitted and unsplit (corrected) SKS waves are plotted in fast vs. slow, radial vs. transverse and east vs. north coordinates, Figure 3(b). The split shear wave should appear as an ellipse on all plots, Figure 3(b), and is typically plotted in map view as a bar oriented in the fast direction with length scaled by the δt estimate, Figure 3(d).

3. Results

The SWS measurement results from this study are shown in Table 1. They consist of the calculated shear wave splitting parameter at the 36 seismic stations of the Earthquake Observation Division, Thai Meteorological Department. The measurement of the fast azimuth (Φ) and delay time (δt) typically had an average errors of about $\pm 15^\circ$ and ± 0.2 seconds, respectively (two standard deviations). The fast azimuth (Φ) results can be classified into two sets: dominantly E-W and N-S fast orientations. The first group (E-W orientation) consists of 21 stations, (CHAI, CMMT, KHON, KRDT, LOEI, NAYO, NONG, PANO, PATY, PBKT, PHET, PHIT,
PHRA, RNTT, SKNT, SRAK, SUKH, SURI, UBPT, UTHA, and UTTPA). The N-S orientation group consists of 15 stations, (CHFT, CMAT, CRAW, KHTL, LAMP, MHFT, MHMT, NANG, PAYA, PKDT, PRAC, SRAK, SRTD, SURT, and TRTT). We found that all 15 stations of this second group with dominantly N-S directed fast orientations are located within the Shan-Thai terrane (ST). Overall 15 of the 22 stations (70%) within the Shan-Thai terrane (ST) have N-S fast orientations and their average delay time is 0.7 ± 0.2 seconds. The 14 stations (100%) located within the Indochina terrane (IC) have dominantly E-W fast orientations and their average delay time is 0.8 ± 0.2 seconds. When comparing our results with the work of Yu et al., 2018, the fast azimuth (Φ) results at most stations have approximately the same broad major trend (i.e. either north-south or east-west directions, Figure 4), except for stations PRAC and SRTD (for which we do not have a clear understanding for the reason of these discrepancies). It should be noted that although the fast azimuth (Φ) for these stations is different between the two studies, the results of the delay times for these two stations are in the same range for both studies (0.8 ± 0.2 for PRAC and 0.6 ± 0.1 for SRTD, respectively). A comparison of the delay times between these two studies shows that when considering the error, except for MHFT, CMMT and PBKT, most of the stations have the values of the delay times falling within 30% of each other.

4. Discussion and Conclusions

Figure 4 shows the shear wave splitting parameter results (fast azimuth (Φ) and delay time (δt)) at the 36 seismic stations we used in this study. There are 22 seismic stations located within Shan-Thai terrane (ST), 15 stations or 70% have dominantly N-S fast orientations with an average delay time of 0.7 ± 0.2 seconds. The Shan-Thai terrane (ST) also includes the Indochina zone which is interpreted to have been the Palaeo-Tethys wedge, which overthrust the Shan-Thai terrane (ST) (Ueno, 1999; Ferrari et al., 2008; Sone & Met calfe, 2008). All of the seismic stations located within the Indochina terrane (IC) show E-W fast orientations and an average delay time of 0.8 ± 0.2 second. The Indochina terrane (IC) in Thailand is the Khorat plateau (Takeno et al., 2009). Vertically coherent lithospheric deformation can produce lithospheric anisotropy with fast orientations parallel to the
Figure 4. The SWS measurement results for all 36 seismic stations of Earthquake Observation Division, Thai Meteorological Department coverage Thailand. Red bar represent the direction of the fast orientation. White arrows represent the approximate direction of mantle flow underneath the terrane. Blue bar represent the resent Yu et al. (2018)'s study results for 12 stations within Thailand.

strike of the lithospheric fabric, possibly attributed to mineralogical alignment in response to regional shortening or extension (Silver, 1996; Silver & Chan, 1991). The Triassic was a geologic period with frequent inter-plate collisions among several plates in this region, including the South China, Indochina, Simao and Shan-Thai (or Sibumasu) terranes, which there accreted onto Eurasia (Cai & Zhang, 2009); Figure 5. The Indochina and Shan-Thai (or Sibumasu) terranes are interpreted to be volcanic arc terranes (Nan suture or Nan-Uttaradit suture in the north and the Srakaeo suture in the southeast (Bunopas, 1981; Bunopas & Vella, 1983; Cha rusiri et al., 2002; Ferrari et al., 2008; Sone & Metcalfe, 2008; Ueno & Charoentitirat, 2011). Subduction associated with terrane accretion in this area, together with the Pacific subduction to the east during the Mesozoic could be a cause for the apparent different mineral orientations of the mantle beneath Thailand that we have observed in our SWS analysis.

Acknowledgements
This study was supported by Faculty of Sciences and Graduate School of Kasetsart University. We would like to thanks Department of Geological Sciences, University of Missouri, Columbia for providing the computer laboratory. We would also like to thanks Earthquake Observation Division, Thai Meteorological Department and Patinya Pornspopin for providing the earthquake data and other technical support for this study.

References

Figure 5. Sketch of evolutional maps of southeastern Asia, showing the relative positions of Shan Thai (Sibumasu), Indochina and South China terranes since the Middle Triassic proposed by Cai and Zhang (2009) which suggests that the Shan Thai and Indochina were not the same terranes. This idea is supported by results of the SWS analysis in this work that indicate different SWS result among these terranes.

Chai, J. X., & Zhang, K. J. (2009). A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. *Tectonophysics*, 467, 35–43.

