Roots of Matrices

Boonrod Yuttanan1 and Chaufah Nilrat2

Abstract

Yuttanan, B. and Nilrat, C.
Roots of Matrices

A matrix S is said to be an nth root of a matrix A if $S^n = A$, where n is a positive integer greater than or equal to 2. If there is no such matrix for any integer $n \geq 2$, A is called a rootless matrix. After investigating the properties of these matrices, we conclude that we always find an nth root of a non-singular matrix and a diagonalizable matrix for any positive integer n. On the other hand, we find some matrix having an nth root for some positive integer n. We call it p-nilpotent matrix.

Key words: roots of matrices, rootless matrix, nilpotent matrix, non-singular matrix, diagonalizable matrix

1Student in Mathematics, 2M.S.(Mathematics), Assoc. Prof., Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand.
Corresponding e-mail: chaufah.n@psu.ac.th
Received, 18 May 2004 Accepted, 11 October 2004
An $m \times m$ matrix A is called nilpotent if $A^r = 0$ for some positive integer $r \geq 2$. Yood (2002) showed that any nilpotent $m \times m$ matrix A such that $A^{m-1} \neq 0$ is rootless. Such a matrix is called principal nilpotent. After we finished reading this article, we raised the question of which matrices always have an n^{th} root for any positive integer n and which have an n^{th} root only for some positive integer n. In this paper, we give the answer for these questions.

1. Roots of non-singular matrices

In this section, we prove that every non-singular matrix has an n^{th} root for any positive integer. Before discussing on a non-singular matrix, we start with a property of upper triangular matrices.

Lemma 1.1 If $A = [a_{ij}]$ is an upper triangular matrix, then so is $A^n = [\alpha_{ij}]$ and

$$
\alpha_{ij} = \begin{cases}
0 & \text{if } i > j, \\
\alpha_{ij}^n & \text{if } i = j, \\
\sum_{i_1 < i_2 < \cdots < i_k} a_{i_1i_2} a_{i_2i_3} \cdots a_{i_{k}i_{k+1}} & \text{if } i < j.
\end{cases}
$$

Proof. We give a proof by mathematical induction. For $n = 2$, we have

$$
A^2 = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\
0 & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn} \end{pmatrix}^2 = \begin{pmatrix} a_{11}^2 & a_{11}a_{12} + a_{12}a_{21} & \cdots & a_{11}a_{1m} + \cdots + a_{1m}a_{m1} \\
0 & a_{22}^2 & \cdots & a_{22}a_{2m} + \cdots + a_{2m}a_{mm} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}^2 \end{pmatrix} = \begin{pmatrix} \alpha_{ij} \end{pmatrix}
$$

Apparently, A^2 is an upper triangular matrix such that for each $i, j, 1 \leq i, j \leq m$,

$$
\alpha_{ij} = \begin{cases}
0 & \text{if } i > j, \\
\alpha_{ij}^2 & \text{if } i = j, \\
\sum_{i_1 < i_2 < \cdots < i_k} a_{i_1i_2} a_{i_2i_3} \cdots a_{i_{k}i_{k+1}} & \text{if } i < j.
\end{cases}
$$
Now, we assume that $A' = [\alpha_{ij}]$ where

$$\alpha_{ij} = \begin{cases}
0 & \text{if } i > j, \\
a_{ii} & \text{if } i = j, \\
\sum_{i \in \mathbb{Z}, j \in \mathbb{Z}, i \neq j} a_{ij} a_{ki} a_{li} \cdots a_{i-1j} & \text{if } i < j.
\end{cases}$$

Then

$$A^{k+j} = A^k A$$

$$= \begin{pmatrix}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1m} \\
0 & \alpha_{22} & \ldots & \alpha_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \alpha_{mm}
\end{pmatrix} \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1m} \\
0 & a_{22} & \ldots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{mm}
\end{pmatrix}$$

$$= \begin{pmatrix}
\alpha_{11} a_{11} & \alpha_{11} a_{12} + \alpha_{12} a_{22} & \cdots & \alpha_{11} a_{1m} + \alpha_{12} a_{2m} + \cdots + \alpha_{mm} a_{mm} \\
0 & \alpha_{22} a_{22} & \cdots & \alpha_{22} a_{2m} + \alpha_{23} a_{3m} + \cdots + \alpha_{mm} a_{mm} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{mm} a_{mm}
\end{pmatrix}$$

$$= \left[\alpha'_{ij} \right]$$

It is clear that $\alpha'_{ij} = 0$ if $i > j$. For each integer i, $1 \leq i \leq m$, $\alpha'_{ii} = a_{ii} a_{ii} = a_{ii}^2$. We also obtain

$$\alpha'_{ij} = \sum_{k=1}^{j} \alpha_{ik} a_{kj} = \sum_{k=1}^{j} \left(\sum_{l=1}^{m} a_{il} a_{kj} \right) a_{ij} = \sum_{l=1}^{m} a_{il} a_{kj} a_{ij}$$

for all integers i and j, $1 \leq i < j \leq m$. □

Theorem 1.2 Let A be an $m \times m$ complex matrix. If A is non-singular, then A always has an n^th root for any positive integer n.

Proof. Let A be non-singular. By Schur’s theorem (Strang, 1988), there exists a non-singular matrix S such that $A = S B S^\dagger$ where B is upper triangular. Let $B = \left[b_{ij} \right]_{i \neq j}$. We have $\det(B) \neq 0$; that is, $b_{ii} \neq 0$ for $i = 1, 2, \ldots, m$. Let b_{ii}^* be any n^th root of b_{ii}. If $b_{ii} = b_{ii}^*$, we let $b_{ii}^* = b_{ii}$. We define $C = \left[c_{ij} \right]_{i \neq j}$ as follows.

For each i, $c_{ii} = b_{ii}^*$. For $i > j$, let $c_{ij} = 0$. For $j = i+1$, let $c_{ij} = b_{ij} / \sum_{p=0}^{m-1} c_{pp} c_{ij}^p$. For $j = i+k$, where $2 \leq k \leq m-i$, let $c_{ij} = (b_{ij} - R_{ij}) / \sum_{p=0}^{m-i-k} c_{ii} c_{ij}^p$, and R_{ij} be the sum of the products $c_{ii} c_{ij} c_{ij}^2 \cdots c_{ij}^{m-1}$, where the sum is taken over integers $k_1, k_2, \ldots, k_{m-i}$ such that $i \leq k_1 \leq \ldots \leq k_{m-i} \leq j$ and none of the term in the products contains c_{ij}.
Since \(b_i \neq 0 \) for \(i = 1, 2, \ldots, m \), we have \(c_i \neq 0 \) for each \(i \) and \(c_i^{n-1} + c_i^{n-2}c_{i+k} + \ldots + c_i^{n-1} \neq 0 \) for \(1 \leq k \leq m-i \). This guarantees that \(c_{i+k} \) is well-defined. We claim that \(C' = B \).

Let \(C'' = \left[y_{ij} \right]_{m \times m} \). By Lemma 1.1, we have

\[
y_{ij} = \begin{cases}
0 & \text{if } i > j, \\
c_i^n & \text{if } i = j, \\
\sum_{i \leq k \leq j \leq i+k} c_{i+k} \ldots c_{k} & \text{if } j = i + k, k = 1, 2, \ldots, m-i.
\end{cases}
\]

If \(i = j, y_{ij} = c_i^n = (b_i^n) = b_i \).

If \(j = i + 1 \), we have

\[
y_{i,i+1} = \sum_{i \leq k \leq j \leq j+k} c_i \ldots c_{k} = b_i^i(c_i^{n-1} + c_i^{n-2}c_{i+1} + \ldots + c_i^{n-1})
\]

\[
= b_i^i \frac{c_i^{n-1} + c_i^{n-2}c_{i+1} + \ldots + c_i^{n-1}}{c_i^{n-1} + c_i^{n-2}c_{i+1} + \ldots + c_i^{n-1}}
\]

\[
= b_i^i.
\]

If \(j = i + k \), when \(k = 2, 3, \ldots, m-i \), we have

\[
y_{i,i+k} = \sum_{i \leq k \leq j \leq j+k} c_i \ldots c_{k} = b_i^i(c_i^{n-1} + c_i^{n-2}c_{i+k} + \ldots + c_i^{n-1}) + R_{i,i+k}
\]

\[
= b_i^i + \frac{(b_i^i - R_{i,i+k})(c_i^{n-1} + c_i^{n-2}c_{i+k} + \ldots + c_i^{n-1}) + R_{i,i+k}}{c_i^{n-1} + c_i^{n-2}c_{i+k} + \ldots + c_i^{n-1}}
\]

\[
= b_i^i.
\]

Then we obtain \(\left[y_{ij} \right] = \left[b_{ij} \right] \). Therefore \(A = (SCS^{-1})^n \).

We illustrate the procedure in Theorem 1.2 by the following example. Let

\[
B = \begin{pmatrix}
8 & -12 & 7 & -8 \\
0 & -1 & 0 & 6 \\
0 & 0 & 1 & -28 \\
0 & 0 & 0 & 8
\end{pmatrix}
\]

A third root of \(B \) is a matrix \(C = \left[c_{ij} \right] \) where \(c_{ij} = 0 \), if \(i > j \) and \(c_{11} = 2, c_{22} = -1, c_{33} = 1, c_{44} = 2 \).

\[
c_{12} = b_{12} \left[c_{11}^2 + c_{11}c_{22} + c_{22}^2 \right] = (-12) \left[2^2 + (2)(-1) + (-1)^2 \right] = -4.
\]

\[
c_{23} = b_{23} \left[c_{22}^2 + c_{22}c_{33} + c_{33}^2 \right] = (0) \left[(-1)^2 + (2)(1) + 1 \right] = 0.
\]

\[
C = \begin{pmatrix}
2 & (-1) & 1 & 2 \\
0 & -1 & 0 & 6 \\
0 & 0 & 1 & -28 \\
0 & 0 & 0 & 8
\end{pmatrix}
\]
\[c_{34} = b_{34}/\left[c_{33}^2 + c_{35}c_{44} + c_{44}^2 \right] = (-28)/(1^2 + (1)(2) + 2^2) = -4. \]
\[c_{13} = \frac{1}{D_{13}} \left[c_{11}c_{21}c_{33} + c_{12}c_{22}c_{33} + c_{13}c_{23}c_{33} \right] = \frac{1}{2} \left[-7 - (2)(-4)(0) + (-4)(-1)(0) + (-4)(0)(1) \right]/\left[2^2 + (2)(1) + 1^2 \right] = 1, \]
\[c_{24} = \frac{1}{D_{24}} \left[c_{11}c_{22}c_{24} + c_{12}c_{22}c_{44} + c_{13}c_{23}c_{34} + c_{22}c_{34}c_{44} \right] = \frac{1}{2} \left[6 - (1)(0)(-4) + (0)(1)(-4) + (0)(-4)(2) \right]/\left[(-1)^2 + (-1)(2) + 2^2 \right] = 2, \]
\[c_{14} = \frac{1}{D_{14}} \left[c_{11}c_{13}c_{24} + c_{12}c_{12}c_{24} + c_{13}c_{23}c_{34} + c_{14}c_{24}c_{44} + c_{23}c_{34}c_{44} \right] = \frac{1}{2} \left[-8 - (2)(-4)(2) + (2)(1)(-4) + (-4)(-1)(2) + (-4)(0)(-4) + (4)(2)(2) + (1)(1)(-4) + (1)(-4)(2) \right]/\left[2^2 + (2)(2) + 2^2 \right] = 3. \]

That is \(\begin{pmatrix} 2 & -4 & 1 & 3 \\ 0 & -1 & 0 & 2 \end{pmatrix} \) is a third root of \(B \).

Some singular matrices also have an \(n^{th} \) root such as
\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^*.
\]

Moreover, we have a singular matrix \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) as a rootless matrix (Yood, 2002).

Corollary 1.3 If all eigenvalues of \(A \) are not zero, then \(A \) has an \(n^{th} \) root.

Proof. Since \(A \) has all non-zero eigenvalues, \(A \) is a non-singular matrix. \(\square \)

Note. If only one eigenvalue of \(A \) is zero, in Theorem 1.2, we have \(b_i = 0 \) for only one value of \(i \).

That means we still have \(c_{i1}^{n-1} + c_{i2}^{n-2}c_{i3}^{i1} + \ldots + c_{i4}^{n-1} \neq 0 \). Then we can say that "A matrix with only one zero eigenvalue always has an \(n^{th} \) root".

2. **Roots of diagonalizable matrices**

In this section, we consider an \(n^{th} \) root of a diagonalizable matrix.

Theorem 2.1 Let \(A \) be an \(m \times m \) complex matrix. If \(A \) is diagonalizable, then \(A \) has an \(n^{th} \) root, for any positive integer \(n \).

Proof. Let \(A \) be a diagonalizable matrix, i.e., there exists a non-singular matrix \(S \) such that \(A = SDS^{-1} \) where \(D = \begin{pmatrix} d_{ij}^{k} \end{pmatrix} \) is a diagonal matrix.

Let \(D^{1/n} = \begin{pmatrix} d_{ij}^{1/n} \end{pmatrix} \), where \(d_{ij}^{1/n} \) is an \(n^{th} \) root of \(d_{ij} \). So \(A = S(D^{1/n})S^{-1} = (SD^{1/n}S^{-1})^n \). Therefore an \(n^{th} \) root of \(A \) exists. \(\square \)
However, we have some non-diagonalizable matrices having an \(n \)th root, for example,
\[
\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{pmatrix}
\]
has an \(n \)th root because it is a non-singular matrix. Moreover, we see that diagonalizable matrices and non-singular matrices are not the only matrices which have an \(n \)th root, since
\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}^n, \quad n \geq 2.
\]

There are some further questions the reader might like to consider. For instance, what is a necessary and sufficient condition for a matrix to have an \(n \)th root?

As an immediate consequence of the above theorem, we can conclude that a matrix \(A \) with all distinct eigenvalues has an \(n \)th root. On the other hand, a real symmetric matrix also has an \(n \)th root for any positive integer \(n \), as well as a complex Hermitian matrix and a normal matrix.

3. Roots of \(p \)-nilpotent matrices

In the previous two sections, we considered matrices whose \(n \)th root always exists for any positive integer \(n \). In this section, we consider some kind of matrices which has an \(n \)th root for just some value of \(n \).

An \(m \times m \) matrix \(A \) is called \(p \)-nilpotent if \(A \) is a nilpotent matrix but not principal nilpotent and \(p \) is the least positive integer such that \(A^p = 0 \) but \(A^{p-1} \neq 0 \).

Before discussing on \(p \)-nilpotent matrices, we first give the following lemma.

Lemma 3.1 Let \(A \) be an \(m \times m \) complex matrix. If \(A^k = 0 \) for some \(k \geq 2 \), then \(A^m = 0 \).

Proof. If \(2 \leq k \leq m \), then we are done. Now we suppose \(k > m \). By Schur’s theorem (Strang, 1988), there exists a non-singular matrix \(S \) such that \(A = SBS^{-1} \) where \(B \) is upper triangular. Since \(A^k = 0 \), we have \(B^k = 0 \).

Let \(B = \begin{pmatrix} b_{ij} \end{pmatrix}_{m \times m} \) and \(B' = \begin{pmatrix} b_i' \end{pmatrix}_{m \times m} \). For \(1 \leq i \leq m \), we have \(b_i' = b_i^k \), so \(b_i = 0 \). Then \(B \) is strictly upper triangular. It was proved by Yood (2002) that \(B' = 0 \). Therefore \(A' = 0 \).

Theorem 3.2 Let \(A \) be an \(m \times m \) \(p \)-nilpotent matrix. If an \(n \)th root of \(A \) exists, then \(n \leq m - p + 1 \).

Proof. The proof is by contradiction. Suppose that \(A = S' \), for \(r \geq m - p + 2 \). Then \(S'' = A'' = 0 \) so that \(S \) is an \(m \times m \) nilpotent matrix. By Lemma 3.1, the \(m \)th power of \(S \) is zero. Therefore, \(S' = 0 \) for all positive integers \(k \geq 2 \). But we also have \(S''^{r-1} = A''^{r-1} = 0 \). Now \(p \geq 2 \), hence, \(2r - 2 \leq rp - r \), so that \(r + p - 2 \leq rp - r \). Since \(r \geq m - p + 2 \), \(m \leq r + p - 2 \leq rp - r \). Therefore \(S'^r = 0 \) or \(A'^r = 0 \), which is contrary to the hypotheses on \(A \). Hence, if an \(n \)th root of \(p \)-nilpotent matrix exists, then \(n \leq m - p + 1 \).

Let \(A \) be a 2-nilpotent matrix of size \(3 \times 3 \), i.e., \(A^2 = 0 \). By Schur’s theorem, \(A \) is of the form \(SBS^{-1} \) where \(S \) is non-singular and \(B \) is upper triangular. Hence \(B' = 0 \). This implies \(B'' = 0 \). By Yood (2002), \(B \) is a strictly upper triangular matrix. It is possible to classify \(B \) which is not principal nilpotent as five different types:
We observe that
\[
\begin{pmatrix}
0 & a & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & a \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}^2,
\]
\[
\begin{pmatrix}
0 & 0 & a \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
0 & a & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{pmatrix}^2,
\]
\[
\begin{pmatrix}
0 & a & b \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
0 & -a & b \\
0 & -1 & \frac{b}{a} \\
0 & a & 1 \\
\end{pmatrix}^2,
\]
\[
\begin{pmatrix}
0 & 0 & b \\
0 & 0 & a \\
0 & 0 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
1 & \frac{b}{a} & 0 \\
\frac{a}{b} & 1 & -a \\
0 & 0 & 1 \\
\end{pmatrix}^2.
\]

Then we see that all five types of \(B \) has a square root, say \(T \). Therefore \(A = ST^2S^{-1} = (STS)^2 \). This shows that a square root of any 2-nilpotent matrix of size 3×3 always exists.

Conclusion and Discussion

According to this article, we obtain a formula for calculating an \(n \)th root of a matrix which is non-singular or diagonalizable.

However, being non-singular or diagonalizable are not necessary for matrices to have \(n \)th roots. The reader may try to find other properties of his own. In addition, a matrix having an \(n \)th root for some positive integer \(n \) is not only a \(p \)-nilpotent matrix.

References

