Suitable conditions for xylanases activities from *Bacillus* sp. GA2(1) and *Bacillus* sp. GA1(6) and their properties for agricultural residues hydrolysis

Sudathip Chantorn¹*, Chanitchote Piyapittayanun¹, Phatarporn Khumphai¹, Srisuda Pannanusorn¹, Kulwadee Phannachet², and Jirawan Apiraksakorn³

¹ Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Luang, Pathumthani, 12120 Thailand.
² Department of Microbiology, Faculty of Medicine, Chiang Mai University, Mueang, Chiang Mai, 50200 Thailand.
³ Department of Biotechnology, Faculty of Technology, Khon Kaen University, Mueang, Khon Kaen, 40002 Thailand.

Received: 28 November 2014; Accepted: 6 October 2015

Abstract

Bacillus sp. GA2(1) and *Bacillus* sp. GA1(6) were isolated from soybean field in Khon Kaen province, Thailand. Crude enzymes from both isolates showed the activities of cellulase, xylanase, and mannanase at 37°C for 24 h. The highest xylanase activities of *Bacillus* sp. GA2(1) and *Bacillus* sp. GA1(6) were 1.58±0.25 and 0.82±0.16 U/ml, respectively. The relative xylanase activities from both strains were more than 60% at pH 5.0 to 8.0. The optimum temperature of xylanases was 50°C in both strains. The residual xylanase activities from both strains were more than 70% at 60°C for 60 min. Five agricultural wastes (AWs), namely coffee residue, soybean meal, potato peel, sugarcane bagasse, and corn cobs, were used as substrates for hydrolysis properties. The highest reducing sugar content of 101±1.32 µg/ml was obtained from soybean meal hydrolysate produced by *Bacillus* sp. GA2(1) xylanase.

Keywords: *Bacillus* sp., xylanase, mannanase, cellulase, agricultural wastes

1. Introduction

Lignocellulosic materials such as agricultural hardwood and softwood residues are the most abundant and cost effective biomass available to the world (Hsu et al., 2010). The composition of lignocellulosic material is different depending on species. It consists of mainly three different types of polymers: cellulose, hemicelluloses, and lignin (Hendriks and Zeeman, 2009). Hemicellulose is the second most abundant renewable biomass product. Xylan is recognized as the major hemicelluloses component of agricultural residue, and is composed of a linear backbone of β-1,4-linked-D-xylopyranosyl units, which are differently substituted branch chains (Bajaj et al., 2012). The complete hydrolysis of xylan is achieved by the combination of several enzyme activities due to its complex heterogeneous structure. The major enzymes involved in xylan hydrolysis are endo-1,4-β-xylanase (1,4-β-D-xylanohydrolase; EC 3.2.1.8) that cleaves glycosidic bonds to produce xylo-oligosaccharides and β-D-xyllosidase (1,4-β-D-xyloxydrolase; EC 3.2.1.37) which is responsible for the final breakdown of xylo-oligosaccharide into xylose. The xylanolytic enzymes have attracted a great deal of attention.
because their applications in various industrial processes such as paper and pulp, food and feed and biofuel industries (Susan van Dyk et al., 2010). Furthermore, five agricultural wastes (AWs): coffee residue, soybean meal, potato peel, bagasse, and corn cobs, are found in large quantities in Thailand. All AWs contain cellulose and hemicelluloses that could be hydrolyzed by cellulase and hemicellulase. Xylanases, the major hemicellulase, are produced by many microorganisms including bacteria, yeast, actinomycetes, and filamentous fungi (Fang et al., 2007; Ko et al., 2010). Many studies have been conducted to identify the new xylanase with high activity and stability which can be used in extreme conditions in various industries. The use of low cost agricultural by-products as substrates for xylanase production is attractive in terms of economic production (Gupta et al., 2001; Sanghi et al., 2008). In this study, xylanases from Bacillus sp. GA2(1) and Bacillus sp. GA1(6) were characterized. In addition, we compared the xylanase digestibility of various agricultural materials.

2. Materials and Methods

2.1 Materials

All chemicals, media and media components were of analytical grade obtained from Sigma-Aldrich Chemical Ltd., USA; Carlo Erba reagent, France; and HiMedia Laboratories Ltd.

2.2 Microorganisms and cultivation

Bacillus sp. GA2(1) and Bacillus sp. GA1(6) were isolated from soil in a soybean field in Khon Kaen province using xylan agar medium (pH 7.0) at 37°C. Stock cultures were maintained and stored at -20°C on nutrient broth at culture collection of the Department of Biotechnology, Khon Kaen University, Thailand.

2.3 Enzyme production

The enzyme was produced in an 250 ml Erlenmeyer flask containing 50 ml of basal medium ([% w/v): 0.20 NaNO₃, 0.05 K₂HPO₄, 0.02 MgSO₄·7H₂O, 0.02 MnSO₄·2H₂O, 0.02 CaCl₂·H₂O, 0.02 FeSO₄·7H₂O, and 0.50 corn cob]. The overnight grown Bacillus sp. GA2(1) and Bacillus sp. GA1(6) with the OD 600 of 0.5 was inoculated with 1% (v/v) and shaken at 150 rpm for 18 h at 37°C. The cell suspension was centrifuged at 10,000 Xg for 20 min at 4°C, and the crude enzymes were collected and stored at -20°C for further study.

2.4 Enzyme assay

The activities of extracellular enzymes; cellulase, xylanase, and mannanase were determined at 37°C for 15 min. To determine the respective cellulase, xylanase, and mannanase activities, the reaction mixtures contained 0.5 ml of crude enzyme and 0.5 ml of 10 mM phosphate buffer pH 7.0 with 1% (w/v) substrate in which carboxymethylcellulose (CMC), oat spelt xylan, and locust bean gum were used. The amounts of reducing sugar were measured by the dinitrosalicylic acid (DNS) method (Miller, 1959). All experiments were conducted in triplicate, and results represented as mean values of the activities.

One unit of cellulase, xylanase or mannanase activity was defined as the amount of enzyme producing 1 micromole of glucose, xylose or mannose per minute respectively, under experimental conditions.

2.5 Effect of pH on enzyme activity

The optimum pH of xylanase activity was evaluated of pH of 3.0-10.0 by 10 mM of citrate (pH 3.0-6.0), phosphate (pH 6.0-8.0), and glycine- NaOH (pH 8.0-10.0). The pH stability was determined by incubating xylanase preparation for 24 h at 4°C in different buffers. At regular intervals of 6 h samples were withdrawn and residual enzyme activity was determined.

2.6 Effect of temperature on enzyme activity

The optimum temperature was determined by incubating the enzyme in 10 mM of appropriate buffers at different temperatures between 30°C and 80°C. The thermostability was evaluated by incubation at different temperatures for 60 min. The remaining enzyme activities were measured.

2.7 Hydrolysis experiment

2.7.1 Agricultural wastes preparation

Five AWs: coffee residue, soybean meal, potato peel, sugarcane bagasse, and corn cobs, were used as substrates for this study. All AWs were dried at 60°C for 48 h, blended, milled by a hammer mill (IKA Labortechnik; Janke & Kunkel, Germany) and then sieved to obtain products with an average particle size of 30 mesh. All samples were kept dessicated until used.

2.7.2 Enzymatic hydrolysis

One unit of crude xylanase from Bacillus sp. GA2(1) and from Bacillus sp. GA1(6) were incubated with each type of AW in 10 mM of suitable buffers at 50°C, 150 rpm for 5 h. The reduced sugar content was analyzed using DNS method.

3. Results and Discussion

3.1 Enzyme production

The production of extracellular enzyme by Bacillus sp. GA2(1) and Bacillus sp. GA1(6) was studied in a shaken flask using corn cobs as an inducer. Table 1 shows the activi-
ties of cellulases, mannanases, and xylanases. It was obvious that xylanase produced the highest activity in both strains, with the xylanase activity of *Bacillus* sp. GA2(1) (1.58±0.25 U/ml) being higher than that of *Bacillus* sp. GA1(6) (0.82±0.16 U/ml).

Many microorganisms such as *Bacillus circulans*, *B. stearothermophilus* strain T6 (Khasin et al., 1993), *Streptomyces curtispidorus* (Maheswari and Chandra, 2000), *Rhodothermus marinus* (Hreggvidsson et al., 1996), *Cellulomonas finii* (Shallom and Shoham, 2003), *Cellvibrio japonicas* (Hogg et al., 2001), *Fusarium merismoides* (Fernandez-Martin et al., 2000), *Aspergillus fischeri*, *A. nidulans*, and *Fusarium oxysporum* F3 (Raj and Chandra, 1996; Fernandez-Espinar et al., 1994; Christakopoulos et al., 1996). The optimum pH of 5.0 of crude xylanase from *Bacillus* sp. GA1(6) was the same as many other xylanases from *Streptomyces* sp. T-7, *Streptomyces* sp. No 3137, and from some fungi such as *Aspergillus* sp., *A. awamori*, *A. sojae*, *A. oryzae*, *Trichoderma longibrachiatum*, *T. viride*, and *T. harzianum* (Khanna et al., 1995). However, the slightly acidic pH of the enzymes matched the value characteristic of the family 11 endoxylanase.

The pH stability of *Bacillus* sp. GA2(1) xylanase was such that it retained more than ~60% residual activity after 12 h of incubation in pH range from 3.0 to 10.0. Moreover, xylanase activity from *Bacillus* sp. GA2(1) revealed stability in pH range from 5.0 to 8.0 and showed ~80% residual activity after 24 h of incubation (Figure 2A). Thus, *Bacillus* sp. GA2(1) xylanase possessed broad pH stability and this could be an important tool for application in industrial processes.

Table 1. Extracellular enzyme activities from *Bacillus* sp. GA2(1) and *Bacillus* sp. GA1(6)

<table>
<thead>
<tr>
<th>Culture</th>
<th>Enzyme (U/ml)</th>
<th>Cellulase (U/ml)</th>
<th>Xylanase (U/ml)</th>
<th>Mannanase (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus sp. GA2(1)</td>
<td></td>
<td>0.33±0.10</td>
<td>1.58±0.25</td>
<td>0.53±0.08</td>
</tr>
<tr>
<td>Bacillus sp. GA1(6)</td>
<td></td>
<td>0.15±0.04</td>
<td>0.82±0.16</td>
<td>0.25±0.07</td>
</tr>
</tbody>
</table>

3.2 Effect of pH on xylanase activity

The effect of pH on xylanase activity is shown in Figure 1. Crude xylanases from *Bacillus* sp. GA2(1) and *Bacillus* sp. GA1(6) presented highest activities of 1.58±0.25 U/ml at pH 6.0 and 0.82±0.16 U/ml at pH 5.0, respectively.

The optimum pH of 6.0 of *Bacillus* sp. GA2(1) crude xylanase was not only consistent with that of *Bacillus* sp. strain SPS-0, *Bacillus* sp. W1 (JCM2888), and *Bacillus* sp. strain TAR-1 (Subramaniam and Prema, 2002), but comparable to the optimum pH of some fungal xylanases such as those of *Aspergillus fischeri*, *A. nidulans*, and *Fusarium oxysporum* F3 (Raj and Chandra, 1996; Fernandez-Espinar et al., 1994; Christakopoulos et al., 1996). The optimum pH of 5.0 of crude xylanase from *Bacillus* sp. GA1(6) was the same as many other xylanases from *Streptomyces* sp. T-7, *Streptomyces* sp. No 3137, and from some fungi such as *Aspergillus* sp., *A. awamori*, *A. sojae*, *A. oryzae*, *Trichoderma longibrachiatum*, *T. viride*, and *T. harzianum* (Khanna et al., 1995). However, the slightly acidic pH of the enzymes matched the value characteristic of the family 11 endoxylanase.

The pH stability of *Bacillus* sp. GA2(1) xylanase was such that it retained more than ~60% residual activity after 12 h of incubation in pH range from 3.0 to 10.0. Moreover, xylanase activity from *Bacillus* sp. GA2(1) revealed stability in pH range from 5.0 to 8.0 and showed ~80% residual activity after 24 h of incubation (Figure 2A). Thus, *Bacillus* sp. GA2(1) xylanase possessed broad pH stability and this could be an important tool for application in industrial processes.

![Figure 1](image1.png)
Figure 1. Optimum pH of xylanase from *Bacillus* sp. GA2(1) and *Bacillus* sp. GA1(6). The influence of pH on xylanase activity was determined at 50°C using 10 mM of different buffers.

![Figure 2](image2.png)
Figure 2. Effect of pH on the stability of xylanase from *Bacillus* sp. GA2(1) (A) and *Bacillus* sp. GA1(6) (B). The enzyme solutions were incubated at 4°C for 24 h in different buffers (pH 3 to 10).
Furthermore, the stability of Bacillus sp. GA1(6) xylanase exhibited a broad pH range of 4.0-7.0 with ~70% residual activity after 24 h of incubation while the activities rapidly decreased at pH 8.0-10.0 after 12 h of incubation (Figure 2B). The enzyme was relatively less stable at high pH than at low pH. These results suggested that the Bacillus sp. GA1 (6) xylanase was rather stable in the acidic region. The difference in pH for extracellular xylanases might be due to the post transcriptional modifications in xylanase excretion process, such as glycosylation, that improved stability in more extreme pH conditions (Adhyaru et al., 2014). However, to confirm this result, further study should be performed employing purified xylanase.

3.3 Effect of temperature on xylanase activity

An optimum temperature of xylanases was 50°C for both Bacillus sp. GA2(1) (1.62±0.13 U/ml) and Bacillus sp. GA1(6) (0.75±0.11 U/ml) at standard assay as shown in Figure 3A. Temperature stabilities were evaluated by pre-incubating in the 30-80°C range for 60 min (Figure 3B). They retained more than 70% of their activities at 30-60°C, and above the range, the activities rapidly decreased.

An optimum temperature of 50°C xylanases for both Bacillus sp. GA2(1) and Bacillus sp. GA1(6) was similar to that of B. pumilus (Prema and Asha Poorna, 2006), Bacillus sp. KS09, Bacillus sp. Strain 41-1, Streptomyces sp. CD3, S. exfoliates (Mittal et al., 2012), and Jonesia denitrificans (Nawel et al., 2011). Most of the bacterial xylanases exhibit optimum activity at 50-60°C (Bajaj and Manhas, 2012). However, thermostability of different Bacillus sp. xylanases varies between 55°C and 80°C (Kumar and Satyanarayana, 2011). The thermostability of enzyme depends on molecular interactions such as hydrogen bond, hydrophobic interactions, and disulfide bond which can improve conformation structure for enzyme stability (Bajaj and Sharma, 2011).

3.4 AWs hydrolysis

Five AWs including coffee residue, soybean meal, potato peel, sugarcane bagasse and corn cobs contain carbohydrate structures. The maximum reducing sugar content of 101±1.32 µg/ml was obtained from soybean meal hydrolysate produced by Bacillus sp. GA2(1) xylanase, while the maximum reducing sugar content of 54.32±0.55 µg/ml was observed from coffee residue hydrolysate produced by Bacillus sp. GA1(6) xylanase as shown in Figure 4.

Figure 3. Optimum temperature (A) and thermostability (B) of xylanase from Bacillus sp. GA2(1) and Bacillus sp. GA1(6). The optimum temperature was measured at different temperatures. For determination of thermostability, the residual activity of xylanase was measured after 60 min pre-incubation at different temperatures at pH 6.0 for Bacillus sp. GA2(1) and pH 5.0 for Bacillus sp. GA1(6), respectively.

Figure 4. Reducing sugar content of various agricultural waste hydrolysates produced by crude xylanase from Bacillus sp. GA2(1) () and Bacillus sp. GA1(6) ().
Carbohydrates of all AWS in this study were mainly cellulose and hemicellulose. Hemicelluloses are heteropolymers of pentoses (xyloses and arabinose), hexoses (mannose, galactose and glucose), and sugar acid. Bioconversion of hemicellulose has received more attention because of its practical application in various industrial processes, such as for production of fuels and chemicals (Saha, 2003). Although soybean meal is used primarily as a source of protein, it contains significant quantities of carbohydrates. These are mainly arabinogalactans, which are soluble, and therefore easily fermentable by beneficial microflora in animal intestinal tracts, especially in poultry and swine (Huisman et al., 1999). Moreover, soybean meal hydrolysate may also result in promoting antimicrobial activity. Thus, the xylanase from Bacillus sp. GA2(1) could be used to produce soybean meal hydrolysate as a feed additive. When compared to Bacillus sp. GA1(6) xylanase, Bacillus sp. GA2(1) showed higher potential in hydrolysing various kinds of AWS, suggesting that xylanase Bacillus sp. GA2(1) could be applied in various industries.

4. Conclusions

Bacillus sp. GA2(1) and Bacillus sp. GA1(6) were isolated from a soybean field in Khon Kaen Province in Thailand. Crude xylanases from Bacillus sp. GA2(1) and Bacillus sp. GA1(6) showed the highest activity of 1.50±0.15 U/ml at pH 6.0 and 0.76±0.11 U/ml at pH 5.0, respectively. The pH stability xylanases from Bacillus sp. GA2(1) presented a wide pH range of 3-10 with ~60% residual activity and more than 80% residual activity after 12 h and 24 h of incubation at 4°C, respectively. In addition, xylanases from Bacillus sp. GA1(6) were stable in acid region with ~70% residual activity after 24 h of incubation at 4°C. Both isolates possess the optimum temperature of 50°C. The enzymes retained residual activity up to 70% after preincubating at 60°C for 1 h, and then rapidly decreased. With their action at acidic pH and stability at high temperature, both enzymes are good candidates for several industrial processes. Because Bacillus sp. GA2(1) and Bacillus sp. GA1(6) also produced cellulase and mannanase, and AWS hydrolysate produced sugars, we will characterize these enzymes and types of hydrolysate sugar in the near future.

Acknowledgements

This work was supported by Faculty of Science and Technology, Thammasat University research fund.

References

technology. 3(2), 182-190.

Enzymatic Degradation of Cell Wall Polysaccharides
from Soybean Meal. Carbohydrate Polymers. 38(4),
299-307.

Khanna, P., Sundari, S.S. and Kumar, N.J. 1995. Production,
Isolation and Partial Purification of Xylanase from an
Aspergillus sp. World Journal of Microbiology and
Biotechnology. 11(2), 242-243.

Khasin, A., Alchanati, I. and Shoham, Y. 1993. Purification and
Characterization of a Thermostable Xylanase from
Bacillus stearothermophilus T-6. Applied Environmental
Microbiology. 59(6), 1725-1730.

Ko, C., Lin, Z., Tu, J., Tsai, C., Liu, C., Chen, H. and Wang, T.
2010. Xylanase Production by Paenibacillus campi-
nasensis BL11 and Its Pretreatment of Hardwood Kraft
Pulp Bleaching. International Biodeterioration and
Biodegradation. 64(1), 13-19.

Kumar, V. and Satyanarayana, T. 2011. Applicability of Thermo-
alkali-stable and Cellulase-free Xylanase from a Novel
Thermo-halo-alkaliphilic Bacillus halodurans in Producing
Xylooligosaccharides. Biotechnology Letters. 33(11),2279-2285.

Maheswari, M.U. and Chandra, T.S. 2000. Production and
Potential Applications of a Xylanase from a New Strain of
Streptomyces cuspidosporous. World Journal of
Microbiology and Biotechnology. 16(3), 257-263.

Isolation and Characterization of Microorganisms and
Enzymes with Useful Potential for Degradation of
Cellulose and Hemicellulose. Revista Colombiana de
Biotecnologia. 6(1), 58-67.

Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for
Determination of Reducing Sugars. Analytical Chemistry. 31(3), 426–428.

Mittal, A., Nagar, S., Kirti, K.S.J. and Gupta, V.K. 2012. Isolation,
Purification and Characterization of Alkali and
Thermostable Xylanase from Bacillus sp KS09. International Journal Research and Development Pharmacy and Life Sciences. 1(2), 63-68.

Nawel, B., Said, B., Estelle, C., Hakin, H. and Duchiron, F.
2011. Production and Partial Characterization of
Xylanase Produced by Jonesia denitrificans Isolated

Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I. and Kim, S.W.
2002. Xylanase Production in Solid State Fermentation

Prema, P. and Asha Poorna, C. 2006. Production and Partial
Characterization of Endoxylanase by Bacillus pumilus

Raj, K.C.and Chandra, T.S. 1996. Purification and Character-

Industrial Microbiology and Biotechnology. 30, 279-
291.

Sanghi, A., Garg, N., Sharma, J., Kuhar, K., Kuhad, R.C. and
Gupta, V.K. 2008. Optimization of Xylanase Production
Using Inexpensive Agro-residues by Alkalophilic
Bacillus subtilis ASH in Solid-state Fermentation.

Current Opinion in Microbiology. 6(3), 219-228.

Subramaniyan, S. and Prema, P. 2002. Biotechnology of
Microbial Xylanases: Enzymology, Molecular Biology

Susan van Dyk, J., Sakka, M., Sakka, K. and Pletschke, B.I.
2010. Characterization of the Multi-enzyme Complex
Xylanase Activity from Bacillus licheniformis SVD1.
Enzyme and Microbial Technology. 47(4), 174-177.