Original Article

New types of bipolar fuzzy sets in Γ-semihypergroups

Naveed Yaqoob†*, Muhammad Aslam‡, Inayatur Rehman§ and Mohammed M. Khalaf¶

1,4 Department of Mathematics, College of Science in Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia.
2 Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia.
3 Department of Mathematics and Science, College of Arts and Applied Sciences, Dhofar University, Oman.

Received, 26 June 2015; Accepted, 12 September 2015

Abstract

The notion of bipolar fuzzy set was initiated by Lee (2000) as a generalization of the notion fuzzy sets and intuitionistic fuzzy sets, which have drawn attention of many mathematicians and computer scientists. In this paper, we initiate a study on bipolar (λ, δ)-fuzzy sets in Γ-semihypergroups. By using the concept of bipolar (λ, δ)-fuzzy sets (Yaqoob and Ansari, 2013), we introduce the notion of bipolar (λ, δ)-fuzzy sub Γ-semihypergroups (Γ-hyperideals and bi-Γ-hyperideals) and discuss some basic results on bipolar (λ, δ)-fuzzy sets in Γ-semihypergroups. Furthermore, we define the bipolar fuzzy subset \(B^+ \) and prove that if \(B \) is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., Γ-hyperideal and bi-Γ-hyperideal) of \(H \); then \(B^+ \) is also a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., Γ-hyperideal and bi-Γ-hyperideal) of \(H \).

Keywords: Γ-semihypergroups, bipolar fuzzy sets, bipolar (λ, δ)-fuzzy Γ-hyperideals

1. Introduction

Uncertainty is an attribute of information and uncertain data are presented in various domains. The most appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed by Zadeh (1965), where he introduced the notion of a fuzzy subset of a non-empty set \(X \), as a function from \(X \) to \([0, 1]\). Several researchers have conducted research on the generalizations of the notions of fuzzy sets with huge applications in computer science, logics and many branches of pure and applied mathematics. Rosenfeld (1971) defined the concept of fuzzy group. Since then many papers have been published in the field of fuzzy algebra; for instance, Kuroki (1979, 1981) applied fuzzy set theory to the ideal theory of semigroups. Shabir (2005) studied fully fuzzy prime semigroups. Kehayopulu and Tsingelis (2007) studied fuzzy ideals in ordered semigroups. Akram and Dar (2005) studied fuzzy d-algebras.

There are several kinds of fuzzy set extensions in the fuzzy set theory; for example, intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, etc. Bipolar-valued fuzzy set is another extension of fuzzy set whose membership degree range is different from the above extensions. Lee (2000) introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval \([0, 1]\) to \([-1, 1]\). In a bipolar-valued fuzzy set, the membership degree 0 indicate that elements are irrelevant to...
the corresponding property, the membership degrees on (0; 1] assign that elements somewhat satisfy the property, and the membership degrees on [-1, 0) assign that elements somewhat satisfy the implicit counter-property (Lee, 2004). Jun and Park (2009) applied the notion of bipolar-valued fuzzy sets to BCH-algebras. They introduced the concept of bipolar fuzzy subalgebras and bipolar fuzzy ideals of a BCH-algebra. Lee (2009) applied the notion of bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras. Also some results on bipolar-valued fuzzy BCK/BCI-algebras were introduced by Saeid (2009). Akram et al. (2011, 2012a, 2012b) applied bipolar fuzzy sets to Lie algebras.

The theory of hyperstructure was born in 1934 when Marty (1934) defined hypergroups, began to analysis their properties and applied them to groups, rational algebraic functions. In the following decades and nowadays, a number of different hyperstructures are widely studied from the theoretical point of view and for their applications to many subjects of pure and applied mathematics by many mathematicians. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science and they are studied in many countries of the world. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. A recent book on hyperstructures (Corsini and Leoreanu, 2003) points out their applications in rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs.

Recently, Anvariyeh et al. (2010), Heidari et al. (2010), Mirvakili et al. (2013), Hila et al. (2012) and Abdullah et al. (2011, 2012) introduced the notion of Γ-semihypergroups as a generalization of semigroups, semihypergroups and of Γ-semigroups. They proved some results in this respect and presented many interesting examples of Γ-semihypergroups. Fuzzy set theory has been well developed in the context of hyperalgebraic structure theory (Davvaz, 2010). Several authors investigated the different aspects of fuzzy semi-hypergroups and fuzzy Γ-semihypergroups; for instance, Aslam et al. (2012), Corsini et al. (2011), Davvaz (2000, 2006, 2007), Ersoy et al. (2012, 2013a, 2013b), Shabir and Mahmood (2013, 2015) and Yaqoob et al. (2014).

Yao introduced a new type of fuzzy sets called (λ, θ)-fuzzy sets, and studied (λ, θ)-fuzzy normal subfields (2005). Several authors extended Yao’s idea and continued their researches in applying (λ, θ)-fuzzy sets on different algebraic structures. Coumaregane (2010) characterized near-rings by their (λ, θ)-fuzzy quasi-ideals. Shabir et al. (2011) characterized semigroups by the properties of their fuzzy ideals with thresholds and Khan et al. (2012) characterized ordered semigroups by their (λ, θ)-fuzzy bi-ideals. Li and Feng (2013) extended the idea of (λ, θ)-fuzzy sets in intuitionistic fuzzy sets and studied intuitionistic fuzzy (λ, μ)-fuzzy sets in Γ-semigroups. Yaqoob and Ansari (2013) also extended the idea of (λ, θ)-fuzzy sets in bipolar fuzzy sets and studied bipolar (λ, δ)-fuzzy ideals in ternary semigroups.

In this paper, we study bipolar (λ, δ)-fuzzy sets in Γ-semihypergroups and introduce the notion of bipolar (λ, δ)-fuzzy sub Γ-semihypergroups (Γ-hyperideals and bi-Γ-hyperideals).

2. Preliminaries and Basic Definitions

In this section, we will recall the basic terms and definitions from the hyperstructure theory and bipolar fuzzy sets.

Definition 2.1 A map $\varphi : H \times H \rightarrow \mathcal{P}(H)$ is called hyperoperation or join operation on the set H, where H is a non-empty set and $\mathcal{P}(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all non-empty subsets of H.

A hypergroupoid is a set H together a (binary) hyperoperation.

Definition 2.2 A hypergroupoid (H, \circ), which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$, $\forall x, y, z \in H$, is called a semi-hypergroup.

Definition 2.3 (Anvariyeh et al., 2010) Let H and Γ be two non-empty sets. Then H is called a Γ-semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on H, i.e., $x \gamma y \subseteq H$ for every $x, y \in H$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in H$ we have $x \alpha (y \beta z) = (x \alpha y) \beta z$.

If every $\gamma \in \Gamma$ is an operation, then H is a Γ-semigroup. If (H, γ) is a hypergroup for every $\gamma \in \Gamma$, then H is called a Γ-hypergroup. Let A and B be two non-empty subsets of H. Then we define

$$A \Gamma B = \bigcup_{\gamma \in \Gamma} A \gamma B = \bigcup \{a \gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

Let H be a Γ-semihypergroup and $\gamma \in \Gamma$. A non-empty subset A of H is called a sub Γ-semihypergroup of H if $x \gamma y \subseteq A$ for every $x, y \in A$. A Γ-semihypergroup H is called commutative if for all $x, y \in H$ and $\gamma \in \Gamma$, we have $x \gamma y = y \gamma x$. A non-empty subset A of a Γ-semihypergroup H is a right (left) Γ-hyperideal of H if $A \Gamma H \subseteq A$ ($H \Gamma A \subseteq A$), and is a Γ-hyperideal of H if it is both a right and a left Γ-hyperideal. A non-empty subset B of a Γ-semihypergroup H is called bi-Γ-hyperideal of H if (1) $B \Gamma B \subseteq B$; (2) $B \Gamma B \Gamma B \subseteq B$.

Lee (2000) introduced the concept of bipolar fuzzy set defined on a non-empty set X as objects having the form:

$$B = \left\{ (x, \mu^{+}(x), \mu^{-}(x)) : x \in X \right\}.$$

Where $\mu^{+} : X \rightarrow [0, 1]$ and $\mu^{-} : X \rightarrow [-1, 0]$. The positive membership degree $\mu^{+}(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set B, and the negative membership degree $\mu^{-}(x)$ denotes the satisfaction degree of x to some implicit counter property of B. For the sake of simplicity, we shall use the symbol $B = \left\{ \mu^{+}, \mu^{-} \right\}$ for the bipolar fuzzy set $B = \left\{ (x, \mu^{+}(x), \mu^{-}(x)) : x \in X \right\}$.

Definition 2.4 \(\mathcal{A} = \left\{ \mu^+_{\mathcal{A}}, \mu^-_{\mathcal{A}} \right\} \) and \(\mathcal{B} = \left\{ \mu^+_{\mathcal{B}}, \mu^-_{\mathcal{B}} \right\} \) be two bipolar fuzzy subsets of a \(\Gamma \)-semihypergroup \(H \). Then for all \(x \in H \), their intersection \(\mathcal{A} \cap \mathcal{B} \) is defined by
\[
\mathcal{A} \cap \mathcal{B} = \left\{ \left(x, \mu^-_{\mathcal{A} \cap \mathcal{B}}(x), \mu^+_{\mathcal{A} \cap \mathcal{B}}(x) \right) : x \in H \right\},
\]
where
\[
\mu^-_{\mathcal{A} \cap \mathcal{B}}(x) = \left(\mu^-_{\mathcal{A}}(x) \land \mu^-_{\mathcal{B}}(x) \right) = \mu^-_{\mathcal{A}}(x) \land \mu^-_{\mathcal{B}}(x),
\]
\[
\mu^+_{\mathcal{A} \cap \mathcal{B}}(x) = \left(\mu^+_{\mathcal{A}}(x) \lor \mu^+_{\mathcal{B}}(x) \right) = \mu^+_{\mathcal{A}}(x) \lor \mu^+_{\mathcal{B}}(x).
\]

Definition 2.5 Let \(\mathcal{A} = \left\{ \mu^+_{\mathcal{A}}, \mu^-_{\mathcal{A}} \right\} \) and \(\mathcal{B} = \left\{ \mu^+_{\mathcal{B}}, \mu^-_{\mathcal{B}} \right\} \) be two bipolar fuzzy subsets of a \(\Gamma \)-semihypergroup \(H \). Then their union \(\mathcal{A} \cup \mathcal{B} \) is defined by
\[
\mathcal{A} \cup \mathcal{B} = \left\{ \left(x, \mu^-_{\mathcal{A} \cup \mathcal{B}}(x), \mu^+_{\mathcal{A} \cup \mathcal{B}}(x) \right) : x \in H \right\},
\]
where
\[
\mu^-_{\mathcal{A} \cup \mathcal{B}}(x) = \left(\mu^-_{\mathcal{A}}(x) \lor \mu^-_{\mathcal{B}}(x) \right) = \mu^-_{\mathcal{A}}(x) \lor \mu^-_{\mathcal{B}}(x),
\]
\[
\mu^+_{\mathcal{A} \cup \mathcal{B}}(x) = \left(\mu^+_{\mathcal{A}}(x) \land \mu^+_{\mathcal{B}}(x) \right) = \mu^+_{\mathcal{A}}(x) \land \mu^+_{\mathcal{B}}(x).
\]

Definition 2.6 Let \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \) be a bipolar fuzzy set and \((s,t) \in [-1,0] \times [0,1] \). Define:
1) the sets \(\mathcal{B}^+ = \{ x \in X \mid \mu^+_B(x) \geq t \} \) and \(\mathcal{B}^- = \{ x \in X \mid \mu^-_B(x) \leq s \} \), which are called positive \(t \)-cut of \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \) and the negative \(s \)-cut of \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \), respectively,
2) the sets \(\mathcal{B}^+ = \{ x \in X \mid \mu^+_B(x) > t \} \) and \(\mathcal{B}^- = \{ x \in X \mid \mu^-_B(x) < s \} \), which are called strong positive \(t \)-cut of \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \) and the strong negative \(s \)-cut of \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \), respectively,
3) the set \(X^{(t)}_B = \{ x \in X \mid \mu^+_B(x) \geq t, \mu^-_B(x) \leq s \} \) is called an \((s,t) \)-level subset of \(\mathcal{B} \),
4) the set \(X^{(t)}_B = \{ x \in X \mid \mu^+_B(x) > t, \mu^-_B(x) < s \} \) is called a strong \((s,t) \)-level subset of \(\mathcal{B} \).

3. Bipolar \((\lambda, \delta) \)-fuzzy \(\Gamma \)-hyperideals in \(\Gamma \)-semihypergroups

Yaqoob and Ansari (2013) introduced the notion bipolar \((\lambda, \delta) \)-fuzzy ideals in ternary semigroups. In this section, we introduce and study the notion bipolar \((\lambda, \delta) \)-fuzzy \(\Gamma \)-hyperideals (resp., interior \(\Gamma \)-hyperideals and bi-\(\Gamma \)-hyperideals) in \(\Gamma \)-semihypergroups and discuss some related properties.

In what follows, let \(\lambda^+, \delta^+ \in [0,1] \) be such that \(0 \leq \lambda^- < \delta^- \leq 1 \) and \(\lambda^-, \delta^- \in [-1,0] \) be such that \(-1 \leq \delta^- < \lambda^- \leq 0 \). Both \(\lambda, \delta \in [0,1] \) are arbitrary but fixed.

Definition 3.1 A bipolar fuzzy subset \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \) of a \(\Gamma \)-semihypergroup \(H \) is called
(1) a bipolar \((\lambda, \delta) \)-fuzzy sub \(\Gamma \)-semihypergroup of \(H \) if
\[
\max \left\{ \inf_{\text{hyper}} \mu^+_B(x), \lambda^- \right\} \geq \min \{ \mu^+_B(y), \mu^-_B(z), \delta^- \}
\]
and
\[
\min \left\{ \sup_{\text{hyper}} \mu^-_B(x), \lambda^- \right\} \leq \max \{ \mu^+_B(y), \mu^-_B(z), \delta^- \},
\]
for all \(x, y, z \in H \) and \(\gamma \in \Gamma \).
(2) a bipolar \((\lambda, \delta) \)-fuzzy left \(\Gamma \)-hyperideal of \(H \) if
\[
\max \left\{ \inf_{\text{hyper}} \mu^+_B(x), \lambda^- \right\} \geq \min \{ \mu^-_B(y), \delta^- \}
\]
and
\[
\min \left\{ \sup_{\text{hyper}} \mu^-_B(x), \lambda^- \right\} \leq \max \{ \mu^-_B(y), \delta^- \},
\]
for all \(x, y, z \in H \) and \(\gamma \in \Gamma \).
(3) a bipolar \((\lambda, \delta) \)-fuzzy right \(\Gamma \)-hyperideal of \(H \) if
\[
\max \left\{ \inf_{\text{hyper}} \mu^+_B(x), \lambda^- \right\} \geq \min \{ \mu^-_B(y), \delta^- \}
\]
and
\[
\min \left\{ \sup_{\text{hyper}} \mu^-_B(x), \lambda^- \right\} \leq \max \{ \mu^-_B(y), \delta^- \},
\]
for all \(x, y, z \in H \) and \(\gamma \in \Gamma \).

Example 3.2 Let \(M = (0,1), \Gamma = \{ \gamma \in [n \in \mathbb{N}] \} \) and for every \(n \in \mathbb{N} \) we define hyperoperation \(\gamma \cdot \) on \(M \) as follows
\[
\gamma \cdot \gamma = \gamma = \frac{\gamma \cdot \gamma}{2^t} \quad 0 \leq k \leq n \), \forall \gamma, y \in M.
\]
Then,
\[
\gamma \cdot \gamma \gamma \cdot \gamma = \gamma = \frac{\gamma \cdot \gamma}{2^t} \quad 0 \leq k \leq n + m \), \forall \gamma, y \in M
\]
(x,y) (x,y) (x,y) z = (x,y) (y,z).

So \(M \) is a \(\Gamma \)-semihypergroup (Hila and Abdullah, 2014). Now we define a bipolar fuzzy set \(\mathcal{B} = \left\{ \mu^+_B, \mu^-_B \right\} \) on \(M \) as:
\[
\mu^+_B(x) = \begin{cases}
0.7 & \text{if } 0 < x < \frac{1}{2^t} \quad \text{where } k \in \mathbb{N} \\
0.6 & \text{if } \frac{1}{2^t} \leq x < 1
\end{cases}
\]
Clearly H is a Γ-semihypergroup. Now we define a bipolar fuzzy set $B = \left\{ \mu^+_b, \mu^-_b \right\}$ on H as:

$\mu^+_b(t) = \begin{cases}
0.5 & \text{if } t \in \{x, y\} \\
0.6 & \text{if } t = z \\
0.8 & \text{if } t = w
\end{cases}$

and $\mu^-_b(t) = \begin{cases}
-0.6 & \text{if } t \in \{x, y\} \\
-0.8 & \text{if } t = z \\
-0.9 & \text{if } t = w
\end{cases}$

Then by routine calculation, $B = \left\{ \mu^+_b, \mu^-_b \right\}$ is a bipolar (0.3, 0.4)-fuzzy bi-Γ-hyperideal of H.

Definition 3.6 A bipolar fuzzy subset $B = \left\{ \mu^+_b, \mu^-_b \right\}$ of H is called a bipolar (λ, δ)-fuzzy sub-Γ-semihypergroup of H if

$\max \left\{ \inf_{a \in [\lambda, \delta]} \mu^+_b(a), \lambda^- \right\} \geq \min \{ \mu^+_b(y), \mu^-_b(z), \delta^- \}$

and

$\min \left\{ \sup_{a \in [\lambda, \delta]} \mu^+_b(a), \lambda^- \right\} \leq \max \{ \mu^+_b(x), \mu^-_b(z), \delta^- \}$

for all $x, y, z \in H$ and $\gamma \in \Gamma$.

Theorem 3.7 A bipolar fuzzy subset $B = \left\{ \mu^+_b, \mu^-_b \right\}$ of a Γ-semihypergroup H is a bipolar (λ, δ)-fuzzy sub-Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, (1, 2)-Γ-hyperideal) of H if and only if $\emptyset \neq H^{(x,y)}_B$ is a sub-Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, (1, 2)-Γ-hyperideal) of H for all $(x, y) \in [\delta, \lambda] \times [\lambda, \delta].$

Proof. Let $B = \left\{ \mu^+_b, \mu^-_b \right\}$ be a bipolar (λ, δ)-fuzzy sub-Γ-semihypergroup of H. Let $x, y \in H, (s, t) \in [\delta, \lambda] \times [\lambda, \delta)$ and $x, y \in H^{(x,y)}_B$. Then $\mu^+_b(x) \geq t$ and $\mu^-_b(y) \geq t$, also $\mu^+_b(x) \leq s$ and $\mu^-_b(y) \leq s$. As $B = \left\{ \mu^+_b, \mu^-_b \right\}$ is a bipolar (λ, δ)-fuzzy sub-Γ-semihypergroup of H, Therefore,

$\max \left\{ \inf_{x \in [\delta, \lambda]} \mu^+_b(z), \lambda^- \right\} \geq \min \{ \mu^+_b(x), \mu^-_b(y), \delta^- \}$

$\geq \min \{ t, t, \delta^- \} = t,$

and

$\min \left\{ \sup_{x \in [\delta, \lambda]} \mu^+_b(z), \lambda^- \right\} \leq \max \{ \mu^+_b(x), \mu^-_b(y), \delta^- \}$

$\leq \max \{ s, s, \delta^- \} = s.$

This implies that $\inf_{x \in [\delta, \lambda]} \mu^+_b(z) \geq t$ and $\sup_{x \in [\delta, \lambda]} \mu^-_b(z) \leq s$. Thus $x y \in H^{(x,y)}_B$. Hence $H^{(x,y)}_B$ is a sub Γ-semihypergroup of H.

<table>
<thead>
<tr>
<th>β</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>${x, y}$</td>
<td>${z, w}$</td>
<td>w</td>
</tr>
<tr>
<td>y</td>
<td>${x, y}$</td>
<td>${x, y}$</td>
<td>${z, w}$</td>
<td>w</td>
</tr>
<tr>
<td>z</td>
<td>${z, w}$</td>
<td>${z, w}$</td>
<td>z</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
</tbody>
</table>
Conversely, suppose that $H_B^{(i,r)}$ is a sub Γ-semihypergroup of H. Let $x, y \in H$ such that
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} < \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in x} \mu^+_B(z), \lambda^- \right\} > \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
Then there exist $(s, t) \in [\Delta^-, \Delta^+) \times (\Delta^+, \Delta^-)$ such that
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} < t \leq \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in x} \mu^+_B(z), \lambda^- \right\} > s \geq \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
This shows that $\mu^+_B(x) \geq t, \mu^+_B(y) \geq t$ and $\inf_{z \in x} \mu^+_B(z) < t$, also $\mu^+_B(x) \leq s, \inf_{z \in y} \mu^+_B(y) \leq s$ and $\sup_{z \in y} \mu^+_B(z) > s$. Thus $x, y \in H_B^{(i,r)}$ so $H_B^{(i,r)}$ is a sub Γ-semihypergroup of H. Therefore $x \gamma y \in H_B^{(i,r)}$ for some $z \in x \gamma y$, but this is a contradiction to $\inf_{z \in x} \mu^+_B(z) < t$ and $\sup_{z \in y} \mu^+_B(z) > s$. Thus,
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in y} \mu^+_B(z), \lambda^- \right\} \leq \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
Hence $B = \left\{ \mu^+_B, \mu^-_B \right\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup of H. The other cases can be seen in a similar way. □

Theorem 3.8 Every bipolar fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) $B = \left\{ \mu^+_B, \mu^-_B \right\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) of H with $\lambda^+ = 0, \delta^+ = 1$ and $\lambda^- = 0, \delta^- = -1$.

Corollary 3.9 If a bipolar fuzzy subset $B = \left\{ \mu^+_B, \mu^-_B \right\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) of H. Then the set $B^+_x = \left\{ \mu^+_B(x) \right\}$ is a sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) of H, where $B^+_x = \left\{ x \in H \mid \mu^+_B(x) > \lambda^+ \right\}$ and $B^-_x = \left\{ x \in H \mid \mu^+_B(x) < \lambda^- \right\}$.

Proof. Suppose that $B = \left\{ \mu^+_B, \mu^-_B \right\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup of H. Let $x, y \in H$ such that $x, y \in B^+_x$. Then $\mu^+_B(x) > \lambda^+, \mu^+_B(y) > \lambda^+$ and $\mu^+_B(x) < \lambda^-, \mu^+_B(y) < \lambda^-$. Since $B = \left\{ \mu^+_B, \mu^-_B \right\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup, therefore
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in y} \mu^+_B(z), \lambda^- \right\} \leq \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
Hence $\inf_{z \in x} \mu^+_B(z) > \lambda^+$ and $\sup_{z \in y} \mu^+_B(z) < \lambda^-$. This shows that $x \gamma y \in B^+_x$, for $z \in x \gamma y$ and $\gamma \in \Gamma$. Hence B^+_x is a sub Γ-semihypergroup of H. The other cases can be seen in a similar way. □

Theorem 3.10 A non-empty subset A of H is a sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) of H if and only if the bipolar fuzzy subset $B = \left\{ \mu^+_B, \mu^-_B \right\}$ of H defined as follows:
\[
\mu^+_B(x) = \begin{cases} \geq \delta^+ & \text{if } x \in A \\ \lambda^+ & \text{if } x \notin A, \end{cases}
\]
and
\[
\mu^-_B(x) = \begin{cases} \leq \delta^- & \text{if } x \in A \\ \lambda^- & \text{if } x \notin A, \end{cases}
\]
is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-Γ-hyperideal) of H.

Proof. Suppose that A is a sub Γ-semihypergroup of H. Let $x, y \in H$ be such that $x, y \in A$, then $x \gamma y \subseteq A$ for $\gamma \in \Gamma$. Hence $\inf_{z \in x} \mu^+_B(z) \geq \delta^+$ and $\sup_{z \in y} \mu^-_B(z) \leq \delta^-$. Therefore
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} \geq \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in y} \mu^-_B(z), \lambda^- \right\} \leq \delta^- = \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
If $x \notin A$ or $y \notin A$, then $\min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \} = \lambda^+$ and $\max \{ \mu^-_B(x), \mu^-_B(y), \delta^- \} = \lambda^-$. Thus
\[
\max \left\{ \inf_{z \in x} \mu^+_B(z), \lambda^+ \right\} \geq \lambda^+ = \min \{ \mu^+_B(x), \mu^+_B(y), \delta^+ \},
\]
and
\[
\min \left\{ \sup_{z \in y} \mu^-_B(z), \lambda^- \right\} \leq \lambda^- = \max \{ \mu^+_B(x), \mu^+_B(y), \delta^- \}.
\]
Consequently $B = \{\mu_\gamma^\prime, \mu_\delta\}$ is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup of H.

Conversely, let $x, y \in A$. Then $\mu_\gamma^\prime(x) \geq \delta^+, \mu_\gamma^\prime(y) \geq \delta^+$ and $\mu_\delta(x) \leq \delta^-, \mu_\delta(y) \leq \delta^-$. As $B = \{\mu_\gamma^\prime, \mu_\delta\}$ is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup of H, therefore

$$\max \left\{ \inf_{z \in x \gamma y} \mu_\gamma^\prime(z), \lambda^- \right\} \geq \min \left\{ \mu_\gamma^\prime(x), \mu_\gamma^\prime(y), \delta^+ \right\} \geq \min \left\{ \delta^+, \delta^-, \delta^- \right\} = \delta^+,$$

and

$$\min \left\{ \sup_{z \in x \gamma y} \mu_\gamma^\prime(z), \lambda^- \right\} \leq \max \left\{ \mu_\gamma^\prime(x), \mu_\gamma^\prime(y), \delta^- \right\} \leq \max \left\{ \delta^-, \delta^+, \delta^- \right\} = \delta^-.$$

This implies that $x \gamma y \subseteq A$. Hence A is a sub Γ-semi-hypergroup of H. The other cases can be seen in a similar way. □

Theorem 3.11 A non-empty subset A of H is a sub Γ-semi-hypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1,2)$-Γ-hyperideal) of H if and only if $B_A = \{\mu_\gamma^\prime, \mu_\delta\}$ is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup of Γ (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1,2)$-Γ-hyperideal) of H.

Proof. Let A be a sub Γ-semi-hypergroup of H. Then $B_A = \{\mu_\gamma^\prime, \mu_\delta\}$ is a bipolar fuzzy sub Γ-semi-hypergroup of H and by Corollary 3.8, B_A is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup of H.

Conversely, let $x, y \in H$ be such that $x, y \in A$. Then $\mu_\gamma^\prime(x) = \mu_\gamma^\prime(y) = 1$ and $\mu_\delta(x) = \mu_\delta(y) = -1$. Since B_A is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup of H. Therefore

$$\max \left\{ \inf_{z \in x \gamma y} \mu_\gamma^\prime(z), \lambda^- \right\} \geq \min \left\{ \mu_\gamma^\prime(x), \mu_\gamma^\prime(y), \delta^+ \right\} = \min \left\{ 1, 1, \delta^- \right\} = \delta^+,$$

and

$$\min \left\{ \sup_{z \in x \gamma y} \mu_\gamma^\prime(z), \lambda^- \right\} \leq \max \left\{ \mu_\gamma^\prime(x), \mu_\gamma^\prime(y), \delta^- \right\} = \max \left\{ -1, -1, \delta^- \right\} = \delta^-.$$

It implies that $\inf_{z \in x \gamma y} \mu_\gamma^\prime(z) \geq \delta^+$ and $\sup_{z \in x \gamma y} \mu_\gamma^\prime(z) \leq \delta^-$. Thus $z \in x \gamma y \subseteq A$ for $z \in x \gamma y$ and $y \in \Gamma$. Therefore $B_A = \{\mu_\gamma^\prime, \mu_\delta\}$ is a sub Γ-semi-hypergroup of H. The other cases can be seen in a similar way. □

Lemma 3.13 Intersection of any family of bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroups (resp., left Γ-hyperideals, right Γ-hyperideals, interior Γ-hyperideals, bi-Γ-hyperideals, $(1,2)$-Γ-hyperideals) of a Γ-semi-hypergroup H is a bipolar (λ,δ)-fuzzy sub Γ-semi-hypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1,2)$-Γ-hyperideal) of H.

Proof. The proof is straightforward. □

Now we prove that if $B = \{\mu_\gamma^\prime, \mu_\delta\}$ is a bipolar (λ,δ)-fuzzy Γ-hyperideal of H then $B_A = \{\mu_\gamma^\prime, \mu_\delta\}$ is also a bipolar (λ,δ)-fuzzy Γ-hyperideal of H.

Definition 3.14 Let $B = \{\mu_\gamma^\prime, \mu_\delta\}$ be a bipolar fuzzy subset of a Γ-semi-hypergroup H, $\lambda^-, \delta^+ \in (0,1)$ such that $\lambda^- < \delta^+$. We define the bipolar fuzzy subset $B_A = \{\mu_\gamma^\prime, \mu_\delta\}$ of H as follows,

$$\mu_\gamma^A(x) = (\mu_\gamma^\prime(x) \wedge \delta^+) \vee \lambda^- \quad \text{and} \quad \mu_\delta^A(x) = (\mu_\delta(x) \vee \delta^-) \wedge \lambda^-,$$

for all $x \in H$.

Definition 3.15 Let $A = \{\mu_\gamma^\prime, \mu_\delta\}$ and $B = \{\mu_\gamma^\prime, \mu_\delta\}$ be bipolar fuzzy subsets of a Γ-semi-hypergroup H. Then we define,

1. the bipolar fuzzy subset $A \wedge_B B = \{\mu_\gamma^\prime, \mu_\delta\}$ as follows:

$$\mu_\gamma^A \wedge_B B(x) = (\mu_\gamma^\prime(x) \wedge \delta^+) \vee \lambda^- \quad \text{and} \quad \mu_\delta^A \wedge_B B(x) = (\mu_\delta(x) \vee \delta^-) \wedge \lambda^-,$$

2. the bipolar fuzzy subset $A \vee_B B = \{\mu_\gamma^\prime, \mu_\delta\}$ as follows:

$$\mu_\gamma^A \vee_B B(x) = (\mu_\gamma^\prime(x) \wedge \delta^+) \vee \lambda^- \quad \text{and} \quad \mu_\delta^A \vee_B B(x) = (\mu_\delta(x) \vee \delta^-) \wedge \lambda^-,$$

3. the bipolar fuzzy subset $A \oplus_B B = \{\mu_\gamma^\prime, \mu_\delta\}$ as follows:

$$\mu_\gamma^A \oplus_B B(x) = (\mu_\gamma^\prime(x) \wedge \delta^+) \vee \lambda^- \quad \text{and} \quad \mu_\delta^A \oplus_B B(x) = (\mu_\delta(x) \vee \delta^-) \wedge \lambda^-,$$

for all $x \in H$.

Lemma 3.16 Let $A = \{\mu_\gamma^\prime, \mu_\delta\}$ and $B = \{\mu_\gamma^\prime, \mu_\delta\}$ be bipolar fuzzy subsets of a Γ-semi-hypergroup H. Then the following holds:

1. $\{A \wedge_B B\} = \{A \wedge B\}$,
2. $\{A \vee_B B\} = \{A \vee B\}$,
3. $\{A \oplus_B B\} \leq \{A \wedge_B B\}$,
Proof. The proof is straightforward. □

Theorem 3.17 A bipolar fuzzy subset $B = \{\mu^+_{B^i}, \mu^-_{B^i}\}$ of a Γ-semihypergroup H is a bipolar (λ, δ)-fuzzy, if and only if

(1) Γ-semihypergroup of H if and only if $B_{\delta}^+ \subseteq B_{\delta}^+$,
(2) right Γ-hyperideal of H if and only if $\mathcal{H}_{\delta}^+ B \subseteq B_{\delta}^+$,
(3) right Γ-hyperideal of H if and only if $B_{\delta}^+ H \subseteq B_{\delta}^+$,
(4) bi-Γ-hyperideal of H if and only if $B_{\delta}^+ B \subseteq B_{\delta}^+$,

and $B_{\delta}^+ \mathcal{H}_{\delta}^+ B \subseteq B_{\delta}^+$,

(5) interior Γ-hyperideal of H if and only if $\mathcal{H}_{\delta}^+ B_{\delta}^+ \subseteq B_{\delta}^+$,

(6) $(1, 2)$-hyperideal of H if and only if $B_{\delta}^+ B \subseteq B_{\delta}^+$

and $\mathcal{H}_{\delta}^+ B_{\delta}^+ \subseteq B_{\delta}^+$.

Proof. (1) Let $B = \{\mu^+_{B^i}, \mu^-_{B^i}\}$ be a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup of H. Let $z \in x \vee y$ for $x, y \in H$ and $\gamma \in \Gamma$. Then

$$
\mu^+_{B_{\delta}^+(z)} = \left\{ \mu^+_{B_{\delta}^+(z)}(x) \cap \delta^+ \right\} \vee \lambda^+ \\
\mu^-_{B_{\delta}^+(z)} = \left\{ \mu^+_{B_{\delta}^+(z)}(x) \cap \delta^- \right\} \vee \lambda^-
$$

and

$$
\mu^+_{B_{\delta}^+(z)}(x) = \left\{ \mu^+_{B_{\delta}^+(z)}(x) \cap \delta^+ \right\} \vee \lambda^+
$$

$$
\mu^-_{B_{\delta}^+(z)}(x) = \left\{ \mu^+_{B_{\delta}^+(z)}(x) \cap \delta^- \right\} \vee \lambda^-
$$

If there do not exist any $x, y \in H$ and $\gamma \in \Gamma$ such that $z \in x \vee y \vee y$, then

$$
\mu^+_{B_{\delta}^+(z)}(x) = \lambda^+ \leq \mu^+_{B_{\delta}^+(z)}(x),
$$

and

$$
\mu^-_{B_{\delta}^+(z)}(x) = \lambda^- \geq \mu^-_{B_{\delta}^+(z)}(x).
$$

Hence $B_{\delta}^+ \subseteq B_{\delta}^+$. Conversely, assume that $B_{\delta}^+ \subseteq B_{\delta}^+$. If there exist $m, n \in H$ and $\beta \in \Gamma$ such that $x \vee y \leq \lambda^+$, then

$$
\max \left\{ \mu^+_{B_{\delta}^+(z)}(x \vee y) \cap \delta^+ \right\} \vee \lambda^+
$$

$$
\min \left\{ \mu^+_{B_{\delta}^+(z)}(x \vee y) \cap \delta^- \right\} \vee \lambda^-
$$

$$
\min \left\{ \mu^+_{B_{\delta}^+(z)}(x \vee y) \cap \delta^- \right\} \vee \lambda^-
$$

The proofs of (2), (3), (4), (5) and (6) are similar to the proof of (1). □

Proposition 3.18 If $B = \{\mu^+_{B^i}, \mu^-_{B^i}\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-hyperideal) of a Γ-semihypergroup H, then $B_{\delta}^+ = \{\mu^+_{B^i}, \mu^-_{B^i}\}$ is also a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup (resp., left Γ-hyperideal, right Γ-hyperideal, interior Γ-hyperideal, bi-Γ-hyperideal, $(1, 2)$-hyperideal) of H.

Proof. Suppose $B = \{\mu^+_{B^i}, \mu^-_{B^i}\}$ is a bipolar (λ, δ)-fuzzy sub Γ-semihypergroup of H. Let $x, y \in H$ and $\gamma \in \Gamma$. Then

$$
\max \left\{ \min \left\{ \mu^+_{B_{\delta}^+(z)}(x \vee y) \cap \delta^+ \right\} \vee \lambda^+ \right\}
$$

$$
\min \left\{ \mu^+_{B_{\delta}^+(z)}(x \vee y) \cap \delta^- \right\} \vee \lambda^- \right\}
$$

Hence $B_{\delta}^+ \subseteq B_{\delta}^+$. The proofs of (2), (3), (4), (5) and (6) are similar to the proof of (1). □
\[\begin{align*}
\mu(z) &= \min\left\{ \left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \delta^+ \right\} \\
&= \left(\inf_{x \in xy} \left(\mu^+(z) \wedge \lambda^+ \right) \wedge \delta^+ \right) \wedge \delta^+
\end{align*} \]

\[\begin{align*}
\mu(z) &= \left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \delta^+
\end{align*} \]

\[\begin{align*}
\mu(z) &= \left(\left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \lambda^+ \right) \wedge \delta^+ \\
&= \left(\left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \delta^+ \right) \wedge \delta^+
\end{align*} \]

\[\begin{align*}
\mu(z) &= \left(\inf_{x \in xy} \left(\mu^+(z) \wedge \delta^+ \right) \wedge \lambda^+ \right) \wedge \delta^+ \\
&= \left(\inf_{x \in xy} \left(\mu^+(z) \wedge \delta^+ \right) \wedge \delta^+ \right) \wedge \delta^+
\end{align*} \]

Hence \(B^\dagger = \left\{ \mu^+_{\lambda_1, \mu^+_{\lambda_2}} \right\} \) is a bipolar \((\lambda, \delta)-\)fuzzy sub \(\Gamma \)-semi-
hypergroup of \(H \). The other cases can be seen in a similar way. \(\square \)

Theorem 3.19 Let \(A = \left(\mu^+_{\lambda_1}, \mu^-_{\lambda_1} \right) \) be a bipolar \((\lambda, \delta)-\)fuzzy right \(\Gamma \)-hyperideal and \(B = \left(\mu^+_{\lambda_2}, \mu^-_{\lambda_2} \right) \) be a bipolar \((\lambda, \delta)-\)fuzzy left \(\Gamma \)-hyperideal of \(H \). Then \(A \cap \lambda_1 B \subseteq A \wedge \lambda_1 B \).

Proof. Let \(A = \left(\mu^+_{\lambda_1}, \mu^-_{\lambda_1} \right) \) be a bipolar \((\lambda, \delta)-\)fuzzy right \(\Gamma \)-hyperideal and \(B = \left(\mu^+_{\lambda_2}, \mu^-_{\lambda_2} \right) \) be a bipolar \((\lambda, \delta)-\)fuzzy left \(\Gamma \)-hyperideal of \(H \). Then for all \(z \in H \), we have

\[\mu^+_{A \cap \lambda_1 B}(z) = \left(\mu^+_{A \cap \lambda_1 B}(z) \wedge \delta^+ \right) \wedge \lambda^+ \]

\[\mu^-_{A \cap \lambda_1 B}(z) = \left(\mu^-_{A \cap \lambda_1 B}(z) \wedge \delta^+ \right) \wedge \lambda^+ \]

\[\begin{align*}
\mu^+_{A \cap \lambda_1 B}(z) &= \left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \delta^+ \\
&= \left(\left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \lambda^+ \right) \wedge \delta^+
\end{align*} \]

\[\begin{align*}
\mu^-_{A \cap \lambda_1 B}(z) &= \left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \delta^+ \\
&= \left(\left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \lambda^+ \right) \wedge \delta^+
\end{align*} \]

If there do not exist any \(x, y \in H \) and \(y \in \Gamma \) such that \(z \in xy \), then

\[\begin{align*}
\mu^+_{A \cap \lambda_1 B}(z) &= \left(\left(\inf_{x \in xy} \mu^+(z) \wedge \delta^+ \right) \wedge \lambda^+ \right) \wedge \delta^+ \\
&= \left(\mu^+_{A \cap \lambda_1 B}(z) \wedge \lambda^+ \right) \wedge \delta^+
\end{align*} \]

Hence we get \(A \cap \lambda_1 B \subseteq A \wedge \lambda_1 B \). \(\square \)

References

Shabir, M. and Mahmood, T. 2015. Semihypergroups characterized by $(\in\gamma,\in\gamma\vee q\delta)$-fuzzy hyperideals. Journal of Intelligent and Fuzzy Systems. 28(6), 2667-2678.