Efficiency of the V3 region of 16S rDNA and the rpoB gene for bacterial community detection in Thai traditional fermented shrimp (Kung-Som) using PCR-DGGE techniques

Chatthaphisuth Sanchart¹, Soottawat Benjakul², Onnicha Rattanaporn³, Dietmar Haltrich⁴, and Suppasil Maneerat¹*

¹ Department of Industrial Biotechnology,
² Department of Food Technology, Faculty of Agro-Industry,
³ Department of Biochemistry, Faculty of Science,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.
⁴ Department of Food Sciences and Technology, Food Biotechnology Laboratory,
BOKU University of Natural Resources and Life Sciences, Vienna, Austria.

Received: 6 August 2014; Accepted: 11 March 2015

Abstract

Kung-Som is one of several Thai traditional fermented shrimp products, that is especially popular in the southern part of Thailand. This is the first report to reveal the bacterial communities in the finished product of Kung-Som. Ten Kung-Som samples were evaluated using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methodology combined with appropriate primers to study the dynamics of the bacterial population. Two primer sets (V3; 341f(GC)-518r and rpoB; rpoB1698f(GC)-rpoB2014r primers) were considered as a possible tool for the differentiation of bacteria and compared with respect to their efficiency of 16S rDNA and rpoB gene amplification. PCR-DGGE analysis of both the V3-region and rpoB amplicon was successfully applied to discriminate between lactic acid bacteria and Gram positive strains in the bacterial communities of Kung-Som. In conclusion, the application of these two primer sets using PCR-DGGE techniques is a useful tool for analyzing the bacterial diversity in Kung-Som. Moreover, these preliminary results provide useful information for further isolation of desired bacterial strains that could be used as a starter culture in order to improve the quality of Kung-Som.

Keywords: Kung-Som, rpoB gene, V3 region, PCR-DGGE, bacterial community

1. Introduction

Kung-Som is a traditional fermented shrimp product that is found widely distributed in the south of Thailand. It is made from shrimp, sugar, salt and water and is typically fermented with the natural, spontaneous microbial flora. The microbiology of Kung-Som is diverse and complex. The principal microorganisms found in Kung-Som are various lactic acid bacteria (LAB) (Tanasupawat et al., 1998; Hwanhlem et al., 2010). Species identification and population enumeration are critical in the study of bacterial communities. Due to the limitations of conventional microbiological methods, the identification of microorganisms that requires selective enrichment and subculturing is problematic or
impossible. Moreover, classical microbial techniques used have not accurately analyzed the presence of the main bacterial species (Ben Omar and Ampe, 2000) and have not provided a completely accurate representation of these complex communities. On the other hand, culture-independent molecular techniques have provided better methods to give more information on the microbial diversity in complex food samples (Cocolin et al., 2001; Ercolini, 2004). In addition, culture-independent molecular techniques based on specific nucleotide sequences are widely used for monitoring, detection, identification and classification of bacterial diversity.

In the recent decade, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) has been successfully applied to determine the microbiology of fermented food such as fermented sausages (Fontana et al., 2005), fermented grains (Chao et al., 2008), fermented meat (Hu et al., 2009), and fermented dairy products (Liu et al., 2012), to name a few. This approach has provided new insight into the microbial diversity and allowed a more rapid, high-resolution description of microbial communities than did the traditional approaches since it allows the separation of DNA molecules that differ by single bases (Ercolini, 2004). The use of appropriate consensus primers is also a critical point in determining the resolution of DGGE analysis in mixed microbial systems, especially in LAB differentiation (Chen et al., 2008). From the evidence of several published papers, the 16S rDNA seems to be by far the most widely used as a molecular marker for the determination of the phylogenetic relationships of bacteria. The hypervariable V3-region on the 16S rDNA is the most frequently used to start the study of an unknown and complex bacterial community. In addition, the V3-region is considered to have a high grade of resolution and to be highly variable, and it is regarded as a good choice when it comes to length and inter-species heterogeneity (Coppola et al., 2001; Florez and Mayo, 2006; Hovda et al., 2007; Chen et al., 2008). Unfortunately, one problem related to the use of 16S rDNA in DGGE analysis is the complexity created by the existence of multiple heterogeneous copies within a genome (Dahllof et al., 2000; Crosby and Criddle, 2003; Rantsiou et al., 2004).

Consequently, a solution to the problem of 16S rDNA heterogeneity is provided by the analysis of a gene that exists in only a single copy (Fogel et al., 1999). Certain protein-coding genes, such as the gene encoding the beta-subunit of DNA-directed RNA polymerase, rpoB, have been proposed to fulfill this criterion. rpoB is used as a potential biomarker to overcome identification problems because it is considered a housekeeping gene. Targeting the rpoB gene allowed the reliable discrimination of species. The use of this gene as a marker was able to avoid the intraspecies heterogeneity problem caused by the use of the 16S rDNA, which appears to exist in one copy only in bacteria (Dahllof et al., 2000; Ko et al., 2002). In addition, in some strains of bacteria, an internal region of rpoB is a more suitable sequence than 16S RNA because of its higher nucleotide polymorphism (Khamis et al., 2005). However, the use of rpoB presents a taxonomic disadvantage: the database of the sequence is less well documented than that of the 16S rDNA (Rantsiou et al., 2004; Renouf et al., 2006).

There are no data using the PCR-DGGE technique to characterize the dominant bacteria in Kung-Som product. Consequently, the aim of this present study was to focus on the use of the hypervariable V3-region on the 16S rDNA and rpoB gene by using PCR-DGGE techniques as a tool to reveal the bacteria that commonly develop in the Kung-Som product and to compare the efficiency of the 16S rDNA and rpoB gene sequences for species discrimination in such a complex food sample. The obtained results provide preliminary information for study to apply in the microbial starter cultures in Kung-Som fermentation.

2. Materials and Methods

2.1 Lactic acid determination in Kung-Som

Kung-Som samples were purchased from different local markets in Songkhla Province, Thailand. The pH value was measured by a pH meter (420A ORION, USA). Total acidity as lactic acid was determined according to the AOAC (AOAC, 1995). Three independent measurements were made for each sample. Data presented are the calculated means and standard deviations.

2.2 DNA extraction from Kung-Som

DNA was extracted from the juice sample of *Kung-Som* by the method Cocolin et al. (2004), with slight modification. One millilitre of juice sample of each sample was centrifuged at 14,000×g for 10 min at 4°C to pellet the cells. The pellet was washed twice with 1 ml of sterile 0.85% (w/v) NaCl. The pellet was resuspended in 50 µl of 20 mg/ml lysozyme (Fluka, USA). After 30 min incubation at 37°C, 30 µl of 25 mg/ml proteinase K (AMRESCO®, USA) and 150 µl proteinase K buffer were added. The tubes were incubated at 65°C for 90 min before the addition of 400 µl breaking buffer and incubated further at 65°C for 15 min. Then, 400 µl of phenol:chloroform:isoamyl alcohol (25:24:1, pH 6.7) was added for extracting DNA, RNA and protein. The tubes were centrifuged at 12,000×g at 4°C for 10 min, the aqueous phase was collected and the nucleic acid was precipitated with 1 ml of ice-cold absolute isopropanol. The DNA was obtained by centrifugation at 14,000×g at 4°C for 10 min, washed briefly with 70% (v/v) ice-cold ethanol and centrifuged again. The DNA was dried at room temperature, resuspended in 20 µl of RNase-DNase-free sterile water, and treated with 5 µl of 10 mg/ml RNase-free Rnase (Vivantis, USA). After 5 min incubation at 37°C, genomic DNA was stored at -20°C.
2.3 The V3 region of 16S rDNA and rpoB gene amplification

Primers 341f (5’-CCTACGGGAGGCAGCAG-3’) and 518r (5’-ATTACCGCGGCTGCTGG-3’) were used to amplify a region of approximately 200 bp of the V3 region of 16S rDNA (Muyzer et al., 1993). Primers rpoB1698f (5’-AACAT CGGTTTGAATCGAAC-3’) and rpoB2014r (5’-CGTTGCATGGT T GGTACCCT-3’) were used to amplify a region of approximately 350 bp of the rpoB gene (Dahllof et al., 2000). Amplification reactions were carried out in volumes of 50 µl. In addition, a GC clamp was added to the forward primer to improve the sensitivity in the detection of mutations by DGGE (Sheffield et al., 1989). PCR products were examined by 2% (w/v) agarose gel electrophoresis. These were used to check the quality and size of PCR products before being subjected to DGGE analysis.

2.4 DGGE analysis

DGGE analysis was performed using the Dcode universal mutation detection system apparatus (Cleaver Scientific, UK) according to Fontana et al. (2005) with slight modification. Thirty millilitres of PCR product was mixed with loading dye and applied to 8% (w/v) polyacrylamide gels. A 28% to 55% denaturing gradient (100% of denaturant corresponding to 7 mol l⁻¹ urea and 40% formamide) were used for both the 341f(GC)-518r and rpoB1698f(GC)-rpoB2014r primer sets. Electrophoresis was run in 1X TAE buffer at constant temperature (60°C) for 10 min at 20 V and subsequently for 16 h at 85 V. After electrophoresis, the gel was stained for 30 min with 1X (final concentration) SYBR Gold (Invitrogen, USA) in 1X TAE buffer, rinsed in water, and then visualized and photographed under UV illumination with the Gel Documentation (UVI-TECH, England).

After running the DGGE analysis, relevant bands were punched from the gel with sterile pipette tips. Each piece was transferred into 20 µl of RNase-DNase-free sterile water and incubated overnight at 4°C to allow the diffusion of the DNA. Then, the eluted DNA was used as a template and re-amplification took place with primers without the GC clamp. The PCR products were purified by using the HiYieldGel/PCR DNA Fragments Extraction Kit (RBC, Taiwan), and sequenced by a DNA sequencer (Ward Medic Ltd., Malaysia).

2.5 Construction of phylogenetic tree

Searches in GenBank with the BLAST program on the NCBI website were performed to determine the closest known relatives of the determined 16S V3 region and rpoB gene sequences. Multiple sequence alignments were created by using the BioEdit version 3.3.19.0. The phylogenetic tree was obtained to compare similarities among the sequences by the neighbor-joining method (Saitou and Nei, 1987) using the MEGA software version 5. Kimura’s method was followed and 1,000 repetitions were made for bootstrap (Tamura et al., 2011).

3. Results and Discussion

Kung-Som is a one of the traditional fermented food products from southern Thailand. The production process traditionally relies on a spontaneous fermentation initiated by natural and fortuitous microorganisms, mainly various LAB and coagulase-negative cocci (CNC). *Kung-Som* is made from the main raw materials shrimp, sugar, salt and water. These raw materials and personal hygiene can also be the possible sources of pathogenic microorganisms or spoilage bacteria such as *Escherichia coli*, *Staphylococcus aureus*, *Bacillus cereus*, *Vibrio paraaemolyticus* and *Salmonella* sp. In all *Kung-Som* samples of this study, it was found that the pH and lactic acid concentration ranged from 3.58 to 4.04 and 1.78% to 3.12%, respectively (Figure 1). The pH of all samples was below 4.5 because LAB utilizes the carbohydrate substrates available to produce organic acids, and especially lactic acid, as part of their metabolites. These acids not only contribute to the taste, aroma and texture of the product but also lower the pH of the product which is one of the important key factors to ensure quality and safety (Vises-sangkan et al., 2006; Kopermus and Yunchalard, 2010). Generally, a pH lower than 4.4 can inhibit growth of *E. coli* (Alvarado et al., 2006) and *Salmonella* sp. (Sorrells and Speck, 1970); a pH lower than 3.7 can inhibit *S. aureus* (Alvarado et al., 2006); a pH lower than 4.0 inhibits *B. cereus* (Yang et al., 2008) and a pH of 4.5-5.0 has been demonstrated to inhibit *V. paraaemolyticus* (Adams and Moss, 2008). Consequently, the pathogenic or spoilage bacteria were inhibited by organic acids that affected the bacterial growth and extracted DNA concentration in our samples. This finding is probably related to the PCR-DGGE detection limit (10⁴ cfu ml⁻¹). In accordance with these results, no DNA bands corresponding to pathogenic and spoilage bacteria were detected in *Kung-Som* samples of our study.

Renouf et al. (2006) reported that the first step for finding suitable primers is to assume that the primers must be present in all the species and delimit variable sequences to

![Figure 1](image)
separate each species. The last step is to find the most suitable and accurate gradient and the best DGGE conditions (temperature, time). Two sets of primers (V3-region of 16S rDNA and rpoB gene) were considered suitable in this study since it is a housekeeping gene. Consequently, the bacterial diversity of the Kung-Som product was revealed by DGGE analysis. Figure 2 and 3 show the DGGE profiles obtained by the DNA directly extracted from Kung-Som in different regions in Songkhla Province, Thailand. Both the V3 region of 16S rDNA and the rpoB gene were amplified from these DNA templates. The V3 region of 16S rDNA and rpoB gene profiles displayed different patterns. The DGGE profile of the rpoB gene amplification showed that the numbers of the bands were lower than those of the V3 region of 16S rDNA amplification. For the DGGE profile and the phylogenetic relationship of the V3 region of 16S rDNA amplification (Figure 2A and 2B), bands corresponding to Tetragenococcus halophilus (band b), Lactobacillus farcininis (band d) and L. plantarum (band f and k) were prominent in all Kung-Som samples, which is in agreement with data published by Hvanhlem et al. (2010). Although band k was found in all samples, it was faint. L. acetotolerans (band g) and L. rapi (bands j, o, p) were present in all samples except samples 3 and 6. Salinivibrio sharmensis (band a) and Macrooccus sp. (band e) appeared only in sample 3 and L. crustorum (bands h and i) was only found in sample 6. Staphylococcus piscifermentans (band c), Weisella thailandensis (band m) and W. cibaria (band n) were exhibited in some samples but with very weak intensity. Salinivibrio sharmensis (band a) was found only in sample 3. Several bands originating from a single species were observed on the DGGE gels, and these were from L. crustorum, L. rapi and L. plantarum. The reason for this is the sequence heterogeneity as described by Crosby and Criddle (2003).

For the DGGE profile and the phylogenetic relationship of rpoB gene amplification (Figure 3A and 3B), bands 4 and 5, corresponding to W. thailandensis and S. piscifermentans, were predominating in every sample. Furthermore, L. fermentum (band 2) and L. reuteri (band 3) were present in all samples except sample 3 and 6. Band 1 was only detected

Figure 2. DGGE profiles (A) and the phylogenetic tree based on V3-region on 16S rDNA (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples. The scale bar represents the number of inferred substitutions per site.
Species-specific DGGE bands from two sets of primers for the main members of LAB and CNC were exhibited. LAB (Lactobacillus, Tetragenococcus and Weissella), including CNC species (Macrococcus and Staphylococcus), are the most commonly isolated bacteria from fermented foods, especially meat and fish (Hu et al., 2008; Kopermsub and Yunchalard, 2010; Hwanhlem et al., 2011). In addition, the genus Salinivibrio was found to be the dominant species in sample 3 of the V3 region amplification. These species are generally isolated from fermented fish samples (Chamroensaksri et al., 2009). The differences in the results obtained, such as the DGGE pattern from the rpoB gene amplification, indicated the occurrence of very low bacterial diversity when compared with the V3-region amplification. These results depended on the specificity of the primers (Endo and Okada, 2005; Renouf et al., 2006) and the PCR conditions (Hongoh et al., 2003).

Rantsiou et al. (2004) and Renouf et al. (2006) reported that the use of rpoB gene amplification combined with PCR-DGGE can only reveal the predominant species in a sample. Moreover, Chen et al. (2008) suggested that the use of appropriate consensus primers is a critical point in influencing the resolution of DGGE analysis in mixed microbial systems, especially in LAB differentiation. Endo and Okada (2005) indicated that LAB could not be detected by universal bacterial PCR primer but were detected when groups of LAB-specific primer were used. This is because the DGGE profile can demonstrate only the diversity of bacteria present at more than 1% of the target bacteria. Therefore, the detection of numerous different species present at low concentrations appeared to be difficult using PCR-rpoB/DGGE. Thus, the rpoB gene pattern exhibited the different species which did not appear in the V3-region pattern.

In both the rpoB gene and V3-region patterns, samples 3 and 6 showed different DGGE patterns from those of compared to other samples. This is because these samples originated from different recipes or processes of preparation which could vary the initial food matrix, fermentation process, personal hygiene, local tradition or local geographic preferences. All of these are crucial factors in determining the growth of specific microbial communities (Cocolin et al., 2004; Ercolini, 2004; Chen et al., 2008). This outcome was related to the higher pH and lower lactic acid content of samples 3 and 6 (Figure 1). In accordance with this lower lactic acid concentration, a difference in the LAB groups of these samples was detected (Figures 2 and 3).

A number of faint bands could not be identified because of their low content which might be related to the heterogeneous distribution of microorganism in the food matrix (Florez and Mayo, 2006). In a detection limit analysis, an individual species (Pediococcus pentosaceus DMST 18752) was identified by PCR-DGGE when its number was higher than 10^4 cfu ml$^{-1}$ (data not shown). The detection limit of PCR-DGGE depends on the species or perhaps even the strain considered. Furthermore, the number and the concentration of the other members of the microbial community, along with the nature of the food matrix, all represent variables influencing the detection limit of DGGE. These factors affect both the efficiency of DNA extraction and the PCR amplification due to possible competition among templates (Ercolini, 2004; Temmerman et al., 2004; De Vero et al., 2006).

Figure 3. DGGE profiles (A) and the phylogenetic tree based on rpoB gene (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples. The scale bar represents the number of inferred substitutions per site.

Legend

- **A**
 - Sample 1
 - Sample 2
 - Sample 3
 - Sample 4
 - Sample 5
 - Sample 6

- **B**
 - Lactobacillus fermentum CECT 5716 (CP002033)
 - Lactobacillus fermentum IPO 3956 (AP008937)
 - Lactobacillus fermentum CNRZ 246 (AF315648)
 - CS2-rpo
 - Lactobacillus reuteri BR1 (GU191835)
 - Lactobacillus reuteri SDL112 (CP002844)
 - Lactobacillus reuteri JCM 1112 (AF007281)
 - CS1-rpo
 - Lactobacillus pentosus IG1 (FR874840)
 - Lactobacillus pentosus MP-10 (FR871825)
 - Lactobacillus plantarum DMS 1017 (AF315652)
 - CS4-rpo
 - Weissella hellanica IMC-2 (HE575158)
 - Weissella paramoagensis (Y16471)
 - CS5-rpo
 - Staphylococcus simulans DSM 20222 (21904048)
 - Staphylococcus pseudoflaverans DSM 7373 (DQ120745)
 - CS6-rpo
 - Staphylococcus carnosus subsp. carnosus DSM 11877 (DQ120734)
 - Staphylococcus carnosus subsp. carnosus DSM 20013 (21904041)
 - Escherichia coli CIP 54.8 (EU010107)
4. Conclusions

The suitability of the primers used was based on the discriminatory efficiency of the hypervariable V3-region and the \textit{rpoB} gene that allowed species differentiation from the dominant groups of bacteria in \textit{Kung-Som}. Although the applications of PCR-DGGE techniques combined with appropriate consensus primers to study complex microbial communities originating from food samples have been shown to be an efficient tool for detection of complex bacteria populations, we believe that our findings represent a preliminary analysis. The data cannot be considered sufficient to achieve a confident identification at species level, but should suggest that the relevant genes together with other target sequences such as other region of 16S rDNA, \textit{gyrA}, \textit{gyrB}, \textit{recA} or \textit{rpoC}, should be used for unequivocal identification of individual species. Moreover, these preliminary results provide useful information for improving product quality. An improved understanding of the changing microflora in \textit{Kung-Som} fermentations could be used to develop a starter culture in the future.

Acknowledgements

This study was financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0060/2556), Shell Centennial Education Fund, Shell Companies in Thailand and the Graduate School Prince of Songkla University. Some part of this research was funded by Prince of Songkla University Grant No. AGR560008S and the Thailand Research Fund Senior Scholar Program.

References

De Vero, L., Gala, E., Gullo, M., Solieri, L. and Giudici, P. 2006 Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology. 23, 809-813.
International Journal of Food Microbiology. 103, 131-142.

Visessanguan, W., Benjakul, S., Smitinont, T., Kittikun, C., Thepkasikul, P. and Panya, A. 2006. Changes in microbiological, biochemical and physico-chemical properties of Nham inoculated with different inoculum levels of Lactobacillus curvatus. LWT-Food Science and Technology. 39, 814-826.