Over expression and application of the β-carboxyltransferase (EgaccD) gene in oil palm (Elaeis guineensis Jacq)

Alisa Nakkaew1,2*, Amornrat Phongdara1,2, Theera Eksomtramage3, and Wilaiwan Chotigeat1,2

1 Center for Genomics and Bioinformatics Research
2 Department of Molecular Biotechnology and Bioinformatics, Faculty of Science,
3 Department of Plant Science, Faculty of Natural Resources,
Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand.

Received 14 September 2012; Accepted 21 September 2013

Abstract

Oil palm is an economic crop with its oil currently in high demand. In this work, the numbers of EgaccD copies, one of the key genes involved in fatty acid synthesis and oil production, were compared from two populations of oil palm, one a low and the other a high oil content productivity cultivar. Real time PCR was employed and the copy number of the EgaccD from the high oil yielding cultivar was much higher than from the low oil yielding cultivar. The EgaccD was then over expressed in oil palm calli under the control of its promoter to establish if its overexpression could enhance the oil content of transgenic calli. An increase in the lipid accumulation by the modified calli was detected by Sudan black B staining. Based on this finding, genetic manipulation of EgaccD seemed to be one promising method to try to increase the oil content. Also it seemed possible to use the level of this gene as a marker to assist selection of possible high oil yielding cultivars in breeding programs.

Keywords: copy number, EgaccD, marker assisted selection, palm oil content

1. Introduction

Oil from the fruit of the oil palm (Elaeis guineensis Jacq) is becoming one of the major sources for bio-diesel production. Its annual production per hectare of planted area can be as high as 7,250 liter/year, which is far higher than for coconut and soybean (Majid and Parveez, 2007). The preferred cultivation is tenera (Sh’Sh’) hybrid was derived exclusively from the dura (Sh’S’) X pisifera (Sh’Sh’) of E. guineensisJacq. Tenera produces higher yields than its parents so its planting is recommended and widely distributed (Billotte et al., 2010). At present, the worldwide demand for palm oil is continuously increasing. However, production of new and better elite genotypes from breeding programs has been extremely slow and has only increased yields slightly (Corley and Tinker 2003). However, the use of high yielding planting materials is one of the most important ways that could lead to increased oil palm productivity. This would decrease the time necessary to quickly disseminate these elite genotypes obtained from breeding programs (Lin et al., 2009). Even though conventional breeding programs have made some contributions to the production of high yielding oil palm planting materials, progress is considered to be slow due to a limited genetic diversity and the length of the selection cycle for oil palm (Wong and Bernardo, 2008). Further improvements using molecular genetic strategies have now been given a priority to ensure successful manipulation of oil palm for years to come. Such molecular techniques have shortened the duration of the breeding programs from years to months, weeks, or even eliminated
the need for them altogether (Mayes et al., 2008; Stuber et al., 1999).

One of the approaches that might overcome potential problems is to try metabolic engineering of some of the key genes required for oil biosynthesis and/or for use as a marker to select high yielding oil palm cultivars (Tester and Langridge 2010; Varshney et al., 2007). Several publications have shown a correlation between the activities of acetyl-CoA carboxylase (ACCase) and the rate of fatty acid synthesis and oil accumulation (Francki et al., 2002; Klaus et al., 2004). In barley, maize and tobacco, ACCase was proven to be the key enzyme in controlling triacylglycerol biosynthesis (Page et al., 1994; Shintani et al., 1997). The ACCase enzyme is a multisubunit complex of four components, a biotin carboxyl carrier protein (BCCP), biotin carboxylase (BC), and the α-subunit and the β-subunit of carboxyltransferase (CT). These four components are encoded by four subunit genes named accB, accC, accA, and accD, respectively, as reviewed by Li et al. (2010). In a previous study, there was a strong indication that the expression level of β-carboxyltransferase (EgaccD) mRNA was directly correlated with the oil palm’s productivity (Nakkaew et al., 2008). It was of interest, therefore, to use a plastid-encoded subunit of the EgaccD gene as a marker to assist in the selection of high oil producing variants. Also was it possible to determine if there was any correlation between the copy numbers of the EgaccD gene from the plastid genome and a high productivity plant. Furthermore, a transgenic approach was used to determine the importance of the EgaccD from a plastid genome for production and accumulation of oil. In this study, transgenic oil palm calli were produced and checked for their lipid accumulation. This work is the first attempt to enhance oil palm productivity by genetic modification of the EgaccD, b subunit of ACCase in oil palm.

2. Materials and Methods

2.1 Plant materials

Different tenera cultivars of Elaeis guineensis were used as the source of the embryos to produce callus. The sterilised fruits were halved and the embryos were extracted. These embryos were cultured on MS media supplemented with 2.5 mg/L 2, 4-D at 25ºC and subcultured onto fresh media every month. After one month of culture, small calli were observed and they were used for transgenic studies. The leaves were harvested from fifteen-year old oil palm plants for the isolation of chromosomal DNA for the detection of the copy number of EgaccD in E. guineensis tenera varieties that had been produced from low and high oil yielding plants.

2.2 The copy number of EgaccD in chromosomal DNA

To measure the copy number of EgaccD, chromosomal DNA was isolated from 16 samples of E. guineensis leaves (tenera variety types) including 8 samples of low and 8 samples of high oil content oil palms and treated with the RNaseH (Invitrogen) according to the manufacturer’s instructions. The real-time PCR was conducted by amplifying 0.1 μg of DNA with the qTM SYBR® Green Super Mix (BioRad) on the MX3000P®. The efficiency of the real-time PCR reactions was determined by performing the reaction using a DNA standard in the range of a 10⁻¹⁰ copy numbers and the cycle-threshold (Ct) values were plotted against the log10 concentration of the template. To estimate the copy number of the target gene (EgaccD) in the oil palm genome, the real-time PCR technique was used to quantitate relative to a single-copy endogenous gene, (the defensin gene, EgAD1; GenBank accession no. AF322914) (Weng et al., 2004). The genome of the 16 leaf samples was extracted and analyzed for the estimated number of copies of EgaccD. The PCR reaction was performed to amplify a 394-bp of EgaccD using the gene-specific primers set (EgaccDF and EgaccDR, Table 1) and EgAD1 was used as the control by using the EgAD1 gene-specific primer set (EgADF and EgADR, Table 1). The specificity of the amplification products was determined by the use of dissociation curves and then the genomic copy number of the samples was calculated from the Ct by interpolation from the standard curve by MaxPro QPCR Software Version 4.01 (Stratagene) (Nakkaew et al., 2008; Weng et al., 2004).

2.3 Cloning of EgaccD and an Eg rbcl-accD promoter for plant transformation

Total RNA was isolated from 100 mg of young E. guineensis leaves using the RNeasy extraction Kit (Qiagen). Fragments of EgaccD were amplified using an RT-PCR reaction, according to the manufacturer’s instructions (Qiagen). The specific primers were designed from the EgaccD (GenBank accession no. DQ004687). The specific primers used were as follows; the EgaccD forward and EgaccD reverse primer were used to amplify the full length of EgaccD. The RT-PCR products with the expected sizes were purified and inserted into the pGEM-T Easy Vector (Promega). Subsequently, the recombinant DNA plasmid was sequenced and used as the template for construction of the EgaccD for plant transformation. The forward and reverse PCR primer corresponding to the beginning of the ORF with the addition of an upstream in-frame Neo I restriction site (EgaccD Neol F and EgaccD Neol R, Table 1) were used to amplify EgaccD. The PCR products were ligated to a similarly digested pCAMBIA 1303 (www.cambia.com.au), carrying the gus and mgfp5 reporter gene controlled by a CaMV35S promoter. The recombinant plasmid DNA fragments were sequenced using the 3730 DNA sequencer to ensure the authenticity of the cloned nucleotide sequence and it was named p3EgD plasmid.

For amplification of the Eg rbcl-accD, a promoter sequence of the E. guineensis chloroplast genome was used to design the primer sets. The forward PCR primer cor-
responded to the chloroplast partial rbcL gene (AJ404830.1) with the addition of an upstream BamH I restriction site; the rbcL-accD BamH I primer and the reverse primer corresponding to the 3’ end of the EgaccD was flanked by a Hind III restriction site; the rbcL-accD Hind III primer, were used to amplify Eg rbcl-accD. The oil palm chromosomal DNA was isolated by DNeasy kit (Qiagen) and was amplified by using Platinum Pfx DNA polymerase according to the manufacturer’s instructions (Invitrogen). The PCR product was purified and cloned into the pGEM-Teasy vector (Promega) followed by sequencing to ensure that the cloned nucleotide sequence was correct. The inserted plasmids were double digested with BamH I and Hind III before being ligated into the p3EgD to create the prbcl-D3EgD. Subsequently, the recombinant DNA plasmid, prbcl-D3EgD, was verified by sequencing and used for transformation of oil palm calli.

### 2.4 Plant transformation

The calli, approximately 3 mm in size were selected from the same callus line and bombarded using the PDS-1000/He particle delivery system (BioRad). The conditions for biolistic-mediated gene transfer for oil palm were optimised using callus and the pressure of 1100 psi that was found to be the best for bombardment and the frequency of transient transformants. Bombardments without DNA and with an empty vector were used as experimental controls. After bombardment, the calli were selected for transformants in media containing hygromycin (50 mg/mL). The expression of the reporter protein, mgfp5 gene (green fluorescence protein; GFP) in one-month transgenic calli were visualized with a confocal laser scanning microscope (FV300, Olympus) fitted with a GFP filter set for excitation between 455 nm and 490 nm and emission above 543 nm (Nakkaew et al., 2010).

### 2.5 DNA analysis of transgenic calli

To analyse for the integration of the EgaccD gene into the transgenic oil palm calli, genomic DNA was isolated from one-month old transformants and was used for PCR analysis. The PCR reaction was performed using the primer sets with the specific site, CaMV35S promoter and EgaccD R as the primer set were used for PCR amplification of a CaMV35S-EgaccD fragment. The gus primer set, GUSF forward and GUSR reverse primer, was used as a positive control to ensure a complete transgenic callus at a 298 bp of gus amplicon size. An 18S rDNA primer set of 540 bp fragment size (18SF and 18SR) was used for an internal positive control in the PCR reactions.

### 2.6 Histological analysis

The control and bombarded calli at the same development stages (2 months after transformation) were fixed in a Navashin solution containing 90 mL of 70% ethyl alcohol, 5 mL of glacial acetic acid and 5 mL of formalin solution. These tissues were dehydrated through an ethanol-tertiary butanol series for 48 h and embedded in paraplast. The specimens were sectioned at 6 µm and stained in a saturated solution of Sudan black B in 70% ethanol, washed in 70% ethanol, and rinsed in water (O2Brien and McCully, 1981). All the sections were mounted with gelatin permount and were viewed with bright-field illumination and an Olympus microscope.
3. Results and Discussion

3.1 Estimating the gene copy number of EgaccD by real time quantitative PCR assay

The quantitative PCR of the EgaccD copies was performed with specific oligonucleotide primers using the chromosomal DNA samples collected from the leaves of low and high oil content productivity oil palm cultivars (Table 2). The specificity of the amplified PCR products was determined by melting curve analysis, directly following the real-time quantitative PCR analysis. Sequencing of the amplified fragments confirmed the identity of the sequences to the previously assembled EgaccD (GenBank accession no. DQ004687) from oil palm. DNA standards for EgaccD and EgAD1 in the range of $10^5$- $10^6$ copy numbers was used to calculate the gene copy number of both genes in individual samples. Each sample was performed in triplicate and all reactions were independently repeated twice to ensure the reproducibility of the results. The observed gene copy numbers of EgaccD by real-time PCR assay was estimated relative to the PCR product of the single-copy of the endogenous, EgAD1 in the same sample. There was a significantly higher genomic copy number of EgaccD in the high oil content compared to the low oil content plants (Figure 1). The average oil content of the high and low oil content productivity plants over a 6 year period are shown in Table 2. Our previous study had shown a correlation between the expression of EgaccD from mature oil palm leaves and the yield of the plant (Nakkaew et al., 2008) but we did not know if the

![Fig1](https://i.imgur.com/123456.png)

Figure 1. Quantitation of the EgaccD copy number in the chromosomal DNA samples collected from low and high productivity oil palm leaves (n=8) by using real time PCR. Each sample was analyzed in triplicate ($p = 0.05$).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Sum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>ND</td>
<td>7.26</td>
<td>24.71</td>
<td>4</td>
<td>ND</td>
<td>4.18</td>
<td>40.15</td>
<td>10.04</td>
</tr>
<tr>
<td>L2</td>
<td>2</td>
<td>20.36</td>
<td>11.75</td>
<td>1.48</td>
<td>0.52</td>
<td>5.31</td>
<td>41.42</td>
<td>6.90</td>
</tr>
<tr>
<td>L3</td>
<td>2.7</td>
<td>5.46</td>
<td>6.21</td>
<td>4.35</td>
<td>13.87</td>
<td>15.66</td>
<td>48.25</td>
<td>8.04</td>
</tr>
<tr>
<td>L4</td>
<td>1.95</td>
<td>10.28</td>
<td>9.14</td>
<td>6.33</td>
<td>10.27</td>
<td>4.52</td>
<td>42.49</td>
<td>7.08</td>
</tr>
<tr>
<td>L5</td>
<td>9.8</td>
<td>9.94</td>
<td>19.59</td>
<td>10.34</td>
<td>ND</td>
<td>ND</td>
<td>49.67</td>
<td>12.42</td>
</tr>
<tr>
<td>L6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>17.27</td>
<td>5.23</td>
<td>ND</td>
<td>22.5</td>
<td>11.25</td>
</tr>
<tr>
<td>L7</td>
<td>ND</td>
<td>5.62</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>5.62</td>
<td>5.62</td>
</tr>
<tr>
<td>L8</td>
<td>ND</td>
<td>1.48</td>
<td>ND</td>
<td>3.04</td>
<td>1.43</td>
<td>ND</td>
<td>5.95</td>
<td>1.98</td>
</tr>
<tr>
<td>H1</td>
<td>8.2</td>
<td>41.1</td>
<td>25.73</td>
<td>18.32</td>
<td>28.29</td>
<td>36.28</td>
<td>157.92</td>
<td>26.32</td>
</tr>
<tr>
<td>H2</td>
<td>18.64</td>
<td>47.5</td>
<td>40.39</td>
<td>28.31</td>
<td>23.73</td>
<td>34.7</td>
<td>193.27</td>
<td>32.21</td>
</tr>
<tr>
<td>H3</td>
<td>15.86</td>
<td>44.62</td>
<td>82.75</td>
<td>41.69</td>
<td>41.65</td>
<td>35.48</td>
<td>262.05</td>
<td>43.68</td>
</tr>
<tr>
<td>H4</td>
<td>7.8</td>
<td>31.82</td>
<td>39.31</td>
<td>24.36</td>
<td>24.15</td>
<td>37.06</td>
<td>164.5</td>
<td>27.42</td>
</tr>
<tr>
<td>H5</td>
<td>2.17</td>
<td>48.68</td>
<td>34.85</td>
<td>57.22</td>
<td>23.09</td>
<td>57.69</td>
<td>223.7</td>
<td>37.28</td>
</tr>
<tr>
<td>H6</td>
<td>22.69</td>
<td>48.48</td>
<td>28.54</td>
<td>25.47</td>
<td>42.21</td>
<td>50.75</td>
<td>218.14</td>
<td>36.36</td>
</tr>
<tr>
<td>H7</td>
<td>27.86</td>
<td>32.48</td>
<td>44.62</td>
<td>49.79</td>
<td>45.33</td>
<td>55.17</td>
<td>255.25</td>
<td>42.54</td>
</tr>
<tr>
<td>H8</td>
<td>25.63</td>
<td>27.68</td>
<td>13.8</td>
<td>40.04</td>
<td>40.02</td>
<td>34.28</td>
<td>181.45</td>
<td>30.24</td>
</tr>
</tbody>
</table>

ND: Not determined.
expression of $EgaccD$ from leaves from younger plants would provide a similar correlation. We now know that the relative copy numbers of $EgaccD$ obtained from the plastid genomes of leaves from either young or old plants reflected their potential for a low or high productivity phenotype. As $EgaccD$ gene is the plastid gene so the copy number of the gene also reflects the chloroplast number as well as the productivity of plant. Therefore, determining the genomic copy number of $EgaccD$ from the younger plant is perhaps a much better method to use to select for a high oil content yielding plant. This occurrence of a high EaccD genomic copy number was positively correlated to the high oil content and productivity of oil palm groups and supported the use of $EgaccD$ for MAS selection of high oil yielding palm plants produced by breeding (Francki et al., 2002; Madoka et al., 2002). In a similar way, Gaines et al. (2010) have reported that the genomic copy number of EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) in resistant plants ($Amaranthus palmeri$) was higher than in sensitive plants by 5-160 fold.

3.2 Isolation and sequence analysis of the $Eg$ rbcl-accD franking region

An $Eg$ rbcl-accD (GenBank accession no. JQ616774) fragment of 2308 bp was cloned and subjected to DNA sequence analysis for determination of sequences with known binding motives. The 2308 bp fragment contained 829 bp of the putative 5' UTR region of $EgaccD$ (called the accD promoter) and a 1479 bp including an open reading frame (ORF) that encodes a putative protein of 492 amino acid residues of the beta-carboxyltransferase from oil palm ($Elaeis guineensis$ Jacq). The accD promoter region (Figure 2) detected the putative transcription start site at position -484 and a putative TATA box position at -528/-532. Plantcare also predicted the presence of some cis-regulatory elements related to its metabolic expression and light induction or stress responses, such as a putative GATA-motif, Sp1 and a putative CAAT box at $-741/-737$, that was relatively close to the transcriptional start site (Figure 2). In addition, a promoter motif search of the $EgaccD$ was carried out to define putative transcriptional elements using the MatInspector 7.7.3 software programs on the Genomatix server (Cartharius et al., 2005). A number of potential regulatory motifs corresponding to known cis-regulatory signals of plant genes were found to be present in the sequence. In addition, several core fragments of importance for transcription factors such as MYB proteins (orange line), MADS box proteins (blue line), DNA binding with one finger (DOF) (red line), WRKY domains (green line) and a motif conserved among the sucrose box (yellow bar) as shown in Figure 2.

3.3 Confirmation of transgenic calli by laser-scanning microscope and polymerase chain reaction analysis

The $Eg$ rbcl-accD promoters were cloned to 3EgD at the BamHI and HindIII sites to produce prbcl-D3EgD. Then
the prbcl-D3EgD was transformed into oil palm calli and selected using a growth medium supplemented with 50 µg/L hygromycin. Tissue sections obtained from these transgenic calli were examined directly for GFP fluorescence with a confocal laser scanning microscope. Callus bombarded with an empty vector (Figure 3B) and recombinant prbcl-D3EgD (Figure 3C) showed many bright green spots from the GFP fluorescence spots inside the cells compared with no fluorescence after bombardment with only gold particles (Figure 3A). Surviving transformed calli were selected for checking the insertion of recombinant DNA (prbcl-D3EgD) into the plant genome, using specific primer sites: CaMVF and accDR to amplify a 1624 bp of the prbcl_D3EgD (Figure 4A). Confirmed transformed callus was also tested for gus expression, using the specific primers set for gus (298 bp) and for 18S rDNA (540 bp) a housekeeping region, as internal positive controls in the PCR reactions (Figure 4A). The target sites of prbcl-D3EgD were identified in the callus to clearly demonstrate the presence of the recombinant DNA. Hence, GFP and PCR analysis demonstrated the successful transcription of EgaccD genes in the transformed oil palm calli and confirmed the efficiency of the biolistic delivery of the DNA. The mRNA expression level of EgaccD was measured by real time PCR and revealed a high copy number in the EgaccD transformed calli (prbcl-D3EgD 1-5) compared with the control calli as shown in Figure 4B, in which each sample was tested in triplicate and all reactions were independently repeated twice to ensure the reproducibility of the results.

3.4 Histological analysis

Light microscopy (LM) was conducted to visualize any lipid oil bodies that occurred in the three month transgenic oil palm calli (Figure 5C-1 and C-2) control (untransformed and empty vector transformed calli, Figure 5A and 5B, respectively). Intracellular oil droplets in callus tissue were observed after histological staining with Sudan black B as dark brown areas from several sections of tissue isolated from prbcl-D3EgD calli (Figure 5C1-C2) when compared with the transformed control calli. The section of transgenic oil palm showed oil droplets within cells and showed dark brown stained oil droplets on the periphery of the cell surfaces of the callus. In addition, Lipid staining is one of the screening methods used. However, determination of the amount of lipid is a further requirement for future work.
Over expression of EgaccD might increase fatty acid production and oil accumulation in calli. We expressed EgaccD with a 5'-untranslated region (UTR) because the 5' UTR acts as a translational enhancer or a stabilizer of the transcripts that require a specific nuclear-encoded RNA polymerase (NEP) (Hirata et al., 2004) for expression. We found that the level of EgaccD expression correlated with the copy number and accumulation of lipid in the transformed callus cells. The over expression of the accD gene in tobacco showed a significant increase of the oil content in their leaves together with an increased leaf longevity compared to the wild type tobacco plant. It is also possible that the storage oil might enhance the growth of a transgenic plant because fatty acids are important regulators of plant growth and differentiation (Madoka et al., 2002; Ohlrogge and Browse, 1995; Topfer et al., 1995).

In conclusion, the results of this work provide evidence that the level of EgaccD supports the level of oil synthesis in transgenic oil palm calli and this could result in an increase in the overall level of oil produced by commercial oil crops. In addition, this study showed that a high copy number of EgaccD genes was correlated with a high oil content productivity of the oil palm in field trials. It will be easy and practical to determine the genotype number of this plant because fatty acids are important regulators of oil crops. In addition, this study showed that a high copy number of EgaccD genes was correlated with a high oil content productivity of the oil palm in field trials. It will be easy and practical to determine the genotype number of this plant because fatty acids are important regulators of plant growth and differentiation (Madoka et al., 2002; Ohlrogge and Browse, 1995; Topfer et al., 1995).

Acknowledgements

We thank the Program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree from the Office of the Higher Education Commission Thailand, for support to Alisa Nakkaew and also supported by the Thailand Research Fund; TRF (RDG 5420022), the National Research University Project of Thailand’s Office of the Higher Education Commission (SIC540561S). Furthermore, this work was financially supported by Prince of Songkla University Fund (SCI 540113S) and the Center for Genomics and Bioinformatics Research, the Faculty of Science, Prince of Songkla University. We thank Dr. Brian Hodgson for assistance with the English and valuable comments.

References


