On bi-Γ-ideals in Γ-semigroups

Ronnason Chinram1 and Chutiporn Jirojkul2

Abstract

Chinram, R. and Jirojkul, C.
On bi-Γ-ideals in Γ-semigroups

In 1952, R. A. Good and D. R. Hughes introduced the notion of bi-ideals of semigroups and in 1981, the concept of Γ-semigroups was introduced by M. K. Sen. We have known that Γ-semigroups are a generalization of semigroups. In this research, the notion of bi-Γ-ideals in Γ-semigroups is introduced. We show that bi-Γ-ideals in Γ-semigroups are a generalization of bi-ideals in semigroups and we give some properties for bi-Γ-ideals in Γ-semigroups. We give the two definitions as follows: A Γ-semigroup M is called a bi-simple Γ-semigroup if M is the unique bi-Γ-ideal of M and a bi-Γ-ideal B of M is called a minimal bi-Γ-ideal of M if B does not properly contain any bi-Γ-ideal of M. We show that a bi-Γ-ideal B of a Γ-semigroup M is a minimal bi-Γ-ideal of M if and only if B is a bi-simple Γ-semigroup.

Key words: bi-Γ-ideals, Γ-semigroups, bi-simple Γ-semigroups, minimal bi-Γ-ideals

1Ph.D.(Mathematics) 2M.Sc.(Mathematics), Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112
Corresponding e-mail : ronnason.c@psu.ac.th
Recieved, 15 August 2005 Accepted, 1 August 2006
Preliminaries

In 1952, R. A. Good and D. R. Hughes have introduced the notion of bi-ideals of semigroups (Good and Hughes, 1952). The first author has studied some properties of bi-ideals in semigroups (Chinram, 2005). Let S be a semigroup. A subsemigroup B of S is called a bi-ideal of S if $BSB \subseteq B$.

Example 1.1. Let $S = \{0,1\}$. Then S is a semigroup under the usual multiplication. Let $B = \{0, \frac{1}{2}\}$. Then B is a subsemigroup of S. We have that $BSB = \{0, \frac{1}{4}\} \subseteq B$. Therefore B is a bi-ideal of S.

Example 1.2. Let N be the set of all positive integers. Then N is a semigroup under the usual multiplication. Let $B = 2N$. Thus $BNB = 4N \subseteq 2N = B$. Hence B is a bi-ideal of N.

In 1981, the concept of Γ-semigroups was introduced by M. K. Sen. Let M and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times M \rightarrow M$, the image of (a, γ, b) by $a \gamma b$, M is called a Γ-semigroup if M satisfies the identities $(a \gamma b) \mu \omega = a (\gamma (b \mu \omega))$ for all $a, b, c \in M$ and $\gamma, \mu, \omega \in \Gamma$ (Sen, 1981, Sen and Saha, 1986, Saha, 1987). Let K be a nonempty subset of M. K is called a sub Γ-semigroup of M if $a \gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Example 1.3. Let $M = \{0,1\}$ and $\Gamma = \{\frac{1}{n} | n \text{ is a positive integer}\}$. Then M is a Γ-semigroup under the usual multiplication. Next, let $K = \{0, \frac{1}{2}\}$. We have that K is a nonempty subset of M and $a \gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ-semigroup of M.

Example 1.4. Let S be a semigroup and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a \gamma b = ab$ for all $a, b \in S$. Then S is a Γ-semigroup.

From Example 1.4, we have seen that every semigroup is a Γ-semigroup where $\Gamma = \{1\}$. Then Γ-semigroups are a generalization of semigroups.

In this research, we generalize bi-ideals of semigroups to bi-Γ-ideals in Γ-semigroups.

Main results

Let M be a Γ-semigroup. A sub Γ-semigroup B of M is called a bi-Γ-ideal of M if $B \Gamma M \Gamma B \subseteq B$.

Example 2.1. Let S be a semigroup, and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a \gamma b = ab$ for all $a, b \in S$. From Example 1.4, we have known that S is a Γ-semigroup. Let B be a bi-ideal of a semigroup S. Thus $BSB \subseteq B$. Since $\Gamma = \{1\}$, $B \Gamma S \Gamma B = BSB \subseteq B$. Hence B is a bi-Γ-ideal of S.

On bi-Γ-ideals in Γ-semigroups

Chinram, R. and Jirojkul, C

Vol. 29 No. 1 Jan. - Feb. 2007

232
Example 2.1 implies that bi-Γ-ideals in Γ-semigroups are a generalization of bi-ideals in semigroups (for a suitable Γ).

Theorem 2.1. Let M be a Γ-semigroup and B_i a bi-Γ-ideal of M for all $i \in I$. If $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi-Γ-ideal of M.

Proof. Let M be a Γ-semigroup and B_i a bi-Γ-ideal of M for all $i \in I$. Assume that $\bigcap_{i \in I} B_i \neq \emptyset$. Let $a, b \in \bigcap_{i \in I} B_i$, $m \in M$ and $\gamma, \mu \in \Gamma$. Then $a, b \in B_i$ for all $i \in I$. Since B_i is a bi-Γ-ideal of M for all $i \in I$, $a \gamma b \in B_i$ and $a \gamma m \mu \in B_i$ for all $i \in I$. Therefore $a \gamma b \in \bigcap_{i \in I} B_i$ and $a \gamma m \mu \in \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a bi-Γ-ideal of M.

In Theorem 2.1, $\bigcap_{i \in I} B_i \neq \emptyset$ is a necessary condition. Let $M = (0, 1)$ and $\Gamma = \{1\}$. Then M is a Γ-semigroup under the usual multiplication. Let N be the set of all positive integers. For $n \in N$, let $B_n = (0, \frac{1}{n})$. It is easy to prove that B_n is a bi-Γ-ideal of M for all $n \in N$ but $\bigcap_{n \in N} B_n = \emptyset$.

Let A be a nonempty subset of a Γ-semigroup M. Let $\mathcal{Z} = \{ B / B \text{ is a bi-Γ-ideal of } M \text{ containing } A \}$. Then $\mathcal{Z} \neq \emptyset$ because $M \in \mathcal{Z}$. Let $(A)_n = \bigcap_{i \in N} B_i$. It is clearly seen that $A \subseteq (A)_n$. By Theorem 2.1, $(A)_n$ is a bi-Γ-ideal of M. Moreover, $(A)_n$ is the smallest bi-Γ-ideal of M containing A. $(A)_n$ is called the bi-Γ-ideal of M generated by A.

Theorem 2.2. Let A be a nonempty subset of a Γ-semigroup M. Then

$$(A)_n = A \cup A \Gamma A \cup A \Gamma M \Gamma A.$$

Proof. Let A be a nonempty subset of a Γ-semigroup M. Let $B = A \cup A \Gamma A \cup A \Gamma M \Gamma A$. Clearly, $A \subseteq B$. We have that $B \Gamma B = (A \cup A \Gamma A \cup A \Gamma M \Gamma A) \Gamma (A \cup A \Gamma A \cup A \Gamma M \Gamma A) \subseteq A \Gamma A \cup A \Gamma M \Gamma A \subseteq B$. Hence B is a sub Γ-semigroup of M.

Since M is a Γ-semigroup, all elements in $B \Gamma M \Gamma B = (A \cup A \Gamma A \cup A \Gamma M \Gamma A) \Gamma (A \cup A \Gamma A \cup A \Gamma M \Gamma A)$ are in the form of $a \gamma \eta \mu a_2$ for some $a_1, a_2 \in A$, $\gamma, \mu \in \Gamma$ and $m \in M$. Thus $B \Gamma M \Gamma B \subseteq \Gamma \mu A \cup A \Gamma M \Gamma A \subseteq B$. Therefore B is a bi-Γ-ideal of M.

Let C be any bi-Γ-ideal of M containing A. Since C is a sub-Γ-semigroup of M and $A \subseteq C$, $A \Gamma A \cup A \Gamma M \Gamma A \subseteq C$. Therefore $B = A \cup A \Gamma A \cup A \Gamma M \Gamma A \subseteq C$.

Hence B is the smallest bi-Γ-ideal of M containing A. Therefore $(A)_n = B = A \cup A \Gamma A \cup A \Gamma M \Gamma A$, as required.

Example 2.2. Let N be the set of all positive integers and $\Gamma = \{1\}$. Then N is a Γ-semigroup under usual addition.

(i) Let $A = \{2\}$. We have that $(A)_n = \{2\} \cup \{9\} \cup \{15, 16, 17, \ldots\}$.

(ii) Let $A = \{3, 4\}$. We have that $(A)_n = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \ldots\}$.

Theorem 2.3. Let M be a Γ-semigroup. Let B be a bi-Γ-ideal of M and A a nonempty subset of M. Then the following statements are true.

(i) $B \Gamma A$ is a bi-Γ-ideal of M.

(ii) $A \Gamma B$ is a bi-Γ-ideal of M.

Proof. (i) We have that $B \Gamma A \Gamma (B \Gamma A) = (B \Gamma A \Gamma B \Gamma A) \Gamma (B \Gamma A) \Gamma (B \Gamma A)$ $= (B \Gamma A \Gamma M \Gamma B \Gamma A) \Gamma (B \Gamma A \Gamma M \Gamma B \Gamma A) \subseteq A \Gamma A \cup A \Gamma M \Gamma A \subseteq B$. Therefore $B \Gamma A$ is a bi-Γ-ideal of M.

(ii) The proof of (ii) is similar to the proof of (i).

Corollary 2.4. Let M be a Γ-semigroup. For a positive integer n, let B_1, B_2, \ldots, B_n be bi-Γ-ideals of M. Then $B_1 \Gamma B_2 \Gamma \ldots \Gamma B_n$ is a bi-Γ-ideal of M.

Proof. We will prove the corollary by mathematical induction. By Theorem 2.3, $B_1 \Gamma B_2$ is a bi-Γ-ideal of M. Next, let n be any positive integer such that $k < n$ and assume $B_1 \Gamma B_2 \Gamma \ldots \Gamma B_k$ is a bi-Γ-ideal of M. We have that $B_1 \Gamma B_2 \Gamma \ldots \Gamma B_k \Gamma B_{k+1} = (B_1 \Gamma B_2 \Gamma \ldots \Gamma B_k) \Gamma B_{k+1}$ is a bi-Γ-ideal of M by Theorem 2.3.

Let M be a Γ-semigroup. M is called a bi-simple Γ-semigroup if M is the unique bi-Γ-ideal
of M. A bi-Γ-ideal B of M is called a minimal bi-Γ-ideal of M if B does not properly contain any bi-Γ-ideal of M.

Example 2.3. Let G be a group and $\Gamma = G$. Then $G' = G$ and $gG = G = Gg$ for all $g \in G$. Then G is a Γ-semigroup under the usual binary operation. It is easy to see that G is the unique bi-Γ-ideal of G. Then G is a bi-simple Γ-semigroup.

Theorem 2.5. Let M be a Γ-semigroup. Then M is a bi-simple Γ-semigroup if and only if $M = m\Gamma M \Gamma m$ for all $m \in M$, where $m\Gamma M \Gamma m$ means $\{m\} \Gamma M \Gamma \{m\}$.

Proof. Let M be a Γ-semigroup.
Assume that M is a bi-simple Γ-semigroup. Let $m \in M$. By Theorem 2.3, $m\Gamma M \Gamma m$ is a bi-Γ-ideal of M. Then $M = m\Gamma M \Gamma m$.
Assume that $M = m\Gamma M \Gamma m$ for all $m \in M$.
Let B be a bi-Γ-ideal of M. Let $b \in B$. By assumption, $M = b\Gamma M \Gamma b \subseteq B \Gamma M \Gamma B \subseteq B$. Hence $M = B$. Therefore M is a bi-simple Γ-semigroup.

Theorem 2.6. Let M be a Γ-semigroup and B a bi-Γ-ideal of M. Then B is a minimal bi-Γ-ideal of M if and only if B is a bi-simple Γ-semigroup.

Proof. Let M be a Γ-semigroup and B a bi-Γ-ideal of M.
Assume that B is a minimal bi-Γ-ideal of M. Let C be a bi-Γ-ideal of B. Then $C \Gamma B \Gamma C \subseteq C$. Since B is a bi-Γ-ideal of M, by Theorem 2.3, $C \Gamma B \Gamma C$ is a bi-Γ-ideal of M. Since B is a minimal bi-Γ-ideal of M and $C \Gamma B \Gamma C \subseteq B$, $C \Gamma B \Gamma C = B$. Hence $B = C \Gamma B \Gamma C \subseteq C$, this implies $B = C$. Then B is a bi-simple Γ-semigroup.
Assume that B is a bi-simple Γ-semigroup. Let C be a bi-Γ-ideal of M such that $C \subseteq B$. Then $C \Gamma B \Gamma C \subseteq C \Gamma M \Gamma C \subseteq C$. Therefore C is a bi-Γ-ideal of B. Since B is a bi-simple Γ-semigroup, $C = B$. Hence B is a minimal bi-Γ-ideal of M, as required.

Acknowledgments.

The authors would like to thank the referees for the useful and helpful suggestions.

References

