ORIGINAL ARTICLE

Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

Miki Kanna¹, Sumpun Wongnawa², Panit Sherdshoopongse³, and Phadoong Boonsin⁴

Abstract

Kanna, M., Wongnawa, S., Sherdshoopongse, P., and Boonsin, P. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

Songklanakarin J. Sci. Technol., 2005, 27(5): 1017-1026

Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, $TiO_2 \cdot 1.6H_2O$ (ha- TiO_2). Ha- TiO_2 exhibits high BET surface area at 449 m²/g. Adsorptions of metal ions onto the ha- TiO_2 surface were investigated in the batch equilibrium experiments, using Mn(II), Fe(III), Cu(II), and Pb(II) solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II), Cu(II), and Pb(II) ions on ha- TiO_2 conformed to the Langmuir isotherm while that of Fe(III) fit equally well to both Langmuir and Freundlich isotherms.

Key words : titanium dioxide, amorphous titanium dioxide, metal oxide surface, Degussa P25, metal ion adsorption, Langmuir isotherm, Freundlich isotherm, solid-phase extraction, preconcentration

¹Ph.D. candidate ²Ph.D.(Inorganic Chemistry), Assoc. Prof. ³M.S.(Analytical Chemistry), Asst. Prof. ⁴B.S. (Chemistry), Asst. Prof., Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

Corresponding e-mail: sumpun.w@psu.ac.th

Received, 17 February 2005 Accepted, 28 April 2005

บทคัดย่อ

มิกิ กัณณะ¹ สัมพันธ์ วงศ์นาวา¹ พนิต เชิดชูพงษ์ ¹ และ ผดุง บุญสิน¹ พฤติกรรมการดูดซับโลหะไอออนบางชนิดบนพื้นผิวไทเทเนียมไดออกไซด์อสัณฐานชนิดไฮเดรต ว. สงขลานกรินทร์ วทท. 2548 27(5) : 1017-1026

ได้สังเคราะห์ไทเทเนียมไดออกไซด์จากปฏิกิริยาระหว่างไทเทเนียมเตตระคลอไรด์กับสารละลายแอมโมเนีย เจือจางที่อุณหภูมิต่ำ ผลิตภัณฑ์ที่ได้นำไปศึกษาด้วยเทคนิค XRD, EDXRF, TGA, DSC และ FT-IR ซึ่งพบว่าเป็น ไทเทเนียมไดออกไซด์อสัณฐานชนิดไฮเดรตมีสูตรเป็น TiO₂.1.6H O (ซึ่งจะแทนด้วยสัญลักษณ์ ha-TiO₂) นำสาร ha-TiO₂ นี้ไปวัดพื้นที่ผิวโดยวิธี BET พบว่ามีพื้นที่ผิว 449 m²/g ซึ่งค่อนข้างสูง ได้ศึกษาการดูดซับไอออนโลหะบน พื้นผิวของ ha-TiO₂ นี้โดยใช้สารละลายที่มีไอออน Mn(II), Fe(III), Cu(II) และ Pb(II) ตรวจวัดความเข้มข้นของ สารละลายโลหะไอออนโดยเครื่องอะตอมมิกแอบซอร์พชัน ศึกษาการดูดซับของโลหะไอออนที่สภาวะความเป็นกรด-เบสของสารละลายเท่ากับ pH 7 ข้อมูลการดูดซับเมื่อนำมาสร้างกราฟพบว่าไอออน Mn(II), Cu(II) และ Pb(II) มี พฤติกรรมสอดคล้องกับไอโซเทิร์มแลงเมียร์ ส่วนไอออน Fe(III) อาจเป็นได้ทั้งไอโซเทิร์มแลงเมียร์และไอโซเทิร์ม ฟรอยด์ลิค

¹ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112

Titanium dioxide (TiO₂), encompassing all its three crystal forms, has wide applications in various fields. One of the most recent applications is as a photocatalyst (Sclafani et al., 1990; Matthews, 1991; Hua et al., 1995; Robertson et al., 1997; Wang and Adesina, 1997; Kosanic',1998; Tatsuma et al., 1999). Another promising aspect is as an inorganic ion exchanger and sorbent due to its high chemical stability and high ion exchange capacity, which may find application in solidphase extraction (SPE) (Vassileva et al., 1996). The study centered around the latter aspect usually involving adsorption of metal cations on the titanium dioxide surface. TiO,'s used in these studies were in the form of anatase or a mixture of anatase and rutile (Degussa P25) (Malati and Smith, 1979; Malati et al., 1982; Ottaviani et al., 1985; Vohra and Davis, 1997; Esumi et al., 1998; Poznyak et al., 1999). The use of amorphous TiO in this regard could only scarcely be found (Abe et al., 1989).

In this work we would like to report the results from our studies with hydrated amorphous TiO_2 (ha- TiO_2) with four metal ions: Mn(II), Fe(III), Cu(II), Pb(II). While we were studying ha- TiO_2 on its photocatalyst activity (Randorn *et al.*,

2004), we observed that ha-TiO₂ possesses a rather high specific surface area which might be useful if it is to be used as a sorbent for metal ions. The specific surface area of ha-TiO₂ is higher than that found with commercial anatase and Degussa P25.

Materials and Methods

Synthesis of ha-TiO,

Ha-TiO₂ used in this work was prepared from titanium tetrachloride and diluted ammonia solution. NH₃ solution (2.93 M, ca. 240 mL, AR, J.T.Baker) was added slowly to TiCl₄ (30 mL, 0.267 mol, AR, Carlo Erba) in a 2-necked round bottom flask which was placed in an ice-water bath and stirred simultaneously until the white precipitate was obtained. The precipitate was filtered gravimetrically and subsequently washed with distilled water until free of chloride and ammonium ions (AgNO₃ and NaOH tests, respectively). The product obtained, ha-TiO₂, was dried at 105°C, ground and sieved to -200 mesh size (75 µm) when used.

Adsorption isotherm experiments

The adsorption isotherms between $ha-TiO_2$ and metal ions (Mn(II), Fe(III), Cu(II), and Pb(II))

Vol.27 No.5 Sep. - Oct. 2005

Kanna, M., et al.

were investigated. In each case, using standard solutions (1000 mg/L, Merck), various concentrations of sample solutions were prepared (5, 15, 20, 25, 50, 75, 100, 150, and 200 mg/L for Mn(II); 2, 4, 5, 10, 12, 15, and 25 mg/L for Fe(III); 25, 35, 50,75, 100,150, 200, 250, and 300 mg/L for Cu(II); 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, and 400 mg/L for Pb(II)). The solutions were adjusted to pH 7 with HNO₂ and NH₂ solutions. A portion of each metal ion solution (30 mL for Mn(II), 50 mL for Fe(III), 25 mL for Cu(II), and 50 mL for Pb(II)) was pipetted into a beaker containing pre-weighed ha-TiO₂ (0.05 g for Mn(II), Fe(III), Cu(II), and 0.025 g for Pb(II)) and stirred at room temperature (10 mins for Cu(II), Mn(II); 15 mins for Fe(III), Pb(II)). After reaching equilibrium, the solution was separated by centrifugation and the concentration of metal ion in the liquid phase (Ce, mg/L) was determined by AAS (Aanalyst 300, Perkin Elmer, U.S.A.).

Adsorption capacity measurements

The comparison of the adsorption capacities between ha-TiO₂ and the commercial TiO₂ (anatase (Carlo Erba), Degussa P25, and rutile (TOA Co., Thailand)) was investigated by using single solution at pH 7 [75 mg/L for Mn(II), 15 mg/L for Fe(III), 200 mg/L for Cu(II), and 400 mg/L for Pb(II)]. After equilibrium, the aqueous phase was separated from TiO₂ by centrifugation and the residual concentration of metal ion (Ce, mg/L) was determined by AAS.

The amount of metal ion adsorbed per unit mass of TiO_2 (i.e., adsorption capacity, mg/g) was calculated by (Arpa *et al.*, 2000)

$$Q_{e} = \frac{[(C_{0} - C_{e}) \times V]}{[m \times 1000]}$$

where C_0 and C_e are the initial and the residual equilibrium concentrations of metal ion in aqueous phase (mg/L), respectively, V is the volume of the aqueous phase (mL) and m is the mass of TiO₂ used (g).

Results and Discussion

Physical properties of ha-TiO,

Ha-TiO₂ prepared by this method existed only as an amorphous form as evidenced by its XRD (Philips PW 3710) pattern (Figure 1) and the purity of ha-TiO₂ was checked by EDXRF (Spectrace 5000, Spectrace Instruments, Inc., Mountainview, California) from which only the Ti K lines could be seen in the spectrum (Figure 2) indicating no contamination by other species or heavy elements. The present of H₂O and NH₄⁺ (*vide infra*) could not be detected by EDXRF due to too low characteristic energies of oxygen and nitrogen atoms.

The FT-IR (EQUINOX 55, Bruker, Germany) spectrum of ha-TiO₂ (Figure 3) showed a large broad band at $3100-3500 \text{ cm}^{-1}$ and rather narrow

Figure 1. XRD pattern of ha-TiO₂.

Songklanakarin J. Sci. Technol.

Adsorption behavior of some metal ions

Kanna, M., et al.

Vol.27 No.5 Sep. - Oct. 2005

Figure 2. EDXRF spectrum of ha-TiO₂.

Figure 3. FT-IR spectrum (reflectance mode) of ha-TiO₂.

Figure 4. TGA curve of ha-TiO₂.

Figure 5. DSC spectrum of ha-TiO₂.

bands at 1638 and 1432 cm⁻¹, together with one weak absorption at 442 cm⁻¹. The broad one at 3100-3500 cm⁻¹ can be assigned to both of v_{0-H} and

 $v_{_{N-H}}$ (stretching mode) while those at 1638 and 1432 cm⁻¹ can be assigned to the $\delta_{_{O-H}}$ and $\delta_{_{N-H}}$ (bending mode) of hydroxyl (OH) and ammonium

Songklanakarin J. Sci. Technol.

 (NH_4^+) groups, respectively (Khalil and Zaki, 1997; Youn *et al.*, 1999). The absorption at 442 cm⁻¹ can be assigned to the v_{TF-O} (stretching mode) of Ti-O bond (Zhang *et al.*, 2002). Therefore, the FT-IR spectra confirmed the presence of impurities such as NH_4^+ and H_O at the surface of ha-TiO₂. The amount of NH_4^+ was, however, very small ca. 1.3-1.8% by elemental analysis for nitrogen content. This small amount of nitrogen also rendered it undetectable by SEM/EDX and WDXRF.

The TGA (TGA7, Perkin Elmer, U.S.A.) curve of ha-TiO₂ (Figure 4) shows a gradual weight loss commencing near 50°C and coming to completion near 450°C. The initial weight loss in the range 50-150°C occurs at higher rate than that taking place at higher temperatures. The total weight loss of the product was about 25.98% equivalent to the decomposition of the product TiO₂·1.6H₂O into TiO₂. A similar result was reported for the hydrolysis product of Ti(OPri)₄ where the total weight loss was found to be 31% due to the decomposition of TiO₂·2H₂O into TiO₂ (Khalil and Zaki, 1997).

The DSC (DSC7, Perkin Elmer., U.S.A.) pattern of TiO₂ sample (Figure 5) showed an endothermic peak at ca. 109°C which could be attributted to liberation or decomposition of water molecules. A characteristic exothermic peak was also observed at ca. 426°C and was attributable to crystallization of amorphous phase to anatase. A similar result was reported for the crystallization temperatures by Youn et al., (Youn et al., 1999). They suggested that DSC and XRD results revealed crystallization temperatures (anatase) of 390 and 467°C for non-rinsed (water-washed only) and ethanol/butanol-rinsed powders, respectively. Ha, et al., reported the crystallization temperatures for the titanium dioxide powders at 440°C (Ha et al., 2000).

The results from XRD, FT-IR, TGA, DSC led to the conclusion that ha-TiO₂ was a hydrated amorphous titanium dioxide with some of NH_4^+ as impurity. The weight loss from TGA hinted that it can be formulated, approximately, as TiO₂·1.6 H₂O. The NH_4^+ ion that present most likely came from the NH_4 that was used in large amount during

the hydrolysis stage and was not washed out completely at the washing stage.

The presence of H₂O (and minute amount of NH_{4}^{+}) in ha-TiO₂ may have some effect on the specific surface area which was measured by BET method (Autosorb-1-C, Quantachrome). The surface area of ha-TiO₂ at 449 m²/g was rather high for titanium dioxide of any forms. In order to corroborate this high value, other samples of TiO₂, such as the commercially available anatase from Carlo Erba, rutile from a paint factory (TOA, Thailand), and Degussa P25, were also subjected to the same measurement under the same conditions. The results of these surface area measurements were: anatase 10.72, rutile 16.08, and Degussa P25 54.50 m²/g. These values are comparable to those reported earlier: anatase 5.9-17.30, rutile 20, and Degussa P25 50-55 m²/g (Sclafani et al., 1990; Tanaka et al., 1991; Matthews, 1991; Hoffman et al., 1995; Wang and Adesina, 1997; Hous et al., 2001).

Nature of metal ion adsorptions by ha-TiO,

The adsorption of metal ions on ha-TiO, reached equilibrium in 10 minutes for Mn (II) and Cu(II) and 15 minutes for Fe(III) and Pb(II). In general, the adsorption of cations by hydrous metal oxides is frequently found to be extremely rapid, most of the exchange occuring within a matter of minutes (Kinniburg and Jackson, 1981). Vassileva et al. (1996) found that it took about 5 minutes to reach equilibrium for the adsorption of metal ions on TiO₂ (anatase) under static conditions. For ha-TiO₂, at lower concentrations, adsorptions increase with increasing concentrations up to maximum concentrations which were 4, 8, 5, and 25 mg/L for Mn(II), Fe(III), Cu(II), and Pb(II), respectively. Sorptions for these four metal ions took place quantitatively in the following pH ranges: 3-7 for Mn(II), 5-9 for Fe(III), and 3-9 for both Cu(II) and Pb(II). Hence, the experimental condition was set up at pH 7 for the adsorption isotherm measurements.

Adsorption isotherm plots

Adsorption characteristics between the

Songklanakarin J. Sci. Technol.		Adsorption behavior	of some metal ions
Vol.27 No.5 Sep Oct. 2005	1022		Kanna, M., et al.

adsorbent and adsorbate can be described by adsorption isotherms. In this work, the Langmuir and Freundlich isotherm plots were used for studying the adsorption data. These isotherms relate metal per unit weight of adsorbent (Qe, mg/ g) to the residual equilibrium concentration of metal ions (Ce, mg/L). The Langmuir is usually used to analyse data by studying the relation between $1/Q_e$ and $1/C_e$. Whereas, the Freundlich is usually used to analyse data by studying the relation between log Q_e and log C_e . Figures 6-7 are the Langmuir and Freundlich isotherm plots , respectively, for Mn(II), Fe(III), Cu(II), and Pb(II).

To compare the reliability of these adsorption isotherms, the correlation coefficient (\mathbb{R}^2) for each adsorption isotherm was calculated and shown in Table 1.Based on the values of the correlation coefficient (\mathbb{R}^2) for the different isotherm plots, the Langmuir isotherm gives the best fit for the adsorption of Mn(II), Cu(II), and Pb(II) whereas the adsorption of Fe(III) seems to fit both Langmuir and Freundlich isotherms. The correlation coefficient (R^2) is a good criterion and means that the difference between experimental data and theoretical values is small when the value of the coefficient approaches 1 (Kim and Chung, 2001).

Comparison of the adsorption capacity

The adsorption capacity is an important factor, because it determines how much of metal ions from solution can be adsorbed by a certain amount of TiO₂. The results are presented in Table 2. It can be seen that the capacity of ha-TiO₂ is considerably higher than that of other TiO₂'s, presumably because of the higher surface area of ha-TiO₂ (449 m²/g). The adsorption capacity of the four comparative TiO₂'s, i.e., anatase(syn), anatase (Carlo Erba), Degussa P25, and rutile(TOA), for Mn(II) were extremely low, practically nil, as

Table 1. The correlation coefficient (\mathbb{R}^2) for adsorptionisotherms of metal ions on ha-TiO2.

	Mn(II)	Fe(III)	Cu(II)	Pb(II)
Langmuir isotherm	0.999	0.9775	0.9659	0.9828
Freundlich isotherm	0.8234	0.9768	0.8556	0.8956

Table 2. Comparison of adsorption capacity (mg/g) of TiO₂.

Samples -	Adsorption capacity (mg/g)				Dafa
	Mn(II)	Fe(III)	Cu(II)	Pb(II)	Kels.
ha-TiO ₂	24.92	14.85	84.79	618.79	this work
Anatase (syn) ^a	ca. 0	14.90	67.40	308.98	this work
Anatase (Carlo Erba)	ca. 0	14.90	71.15	194.28	this work
Degussa P25	ca. 0	14.90	63.63	219.41	this work
Rutile (TOA)	ca. 0	15.02	68.84	187.99	this work
T1(anatase, syn)	6.830	-	9.010	5.030	(Vassileva et al., 1996) ^b
T2(anatase, Fluka)	-	-	0.270	0.220	(Vassileva et al., 1996) ^b
Nanometer TiO ₂	2.14	-	6.86	-	(Liang et al., 2001) ^c

a: This sample of anatase was prepared by the same method as that reported in Vassileva *et al.*, 1996. Surface area of this prepared sample was 127.57 m²/g while that reported in Vassileva *et al.*, 1996 was 84 m²/g.

b: Studied at pH 8 and the adsorption capacity was originally reported in unit of $\mu g/g$.

c: Studied at pH 8 and the adsorption capacity was originally reported in unit of mmol/g.

Vol.27 No.5 Sep. - Oct. 2005

Figure 6. Langmuir isotherm plots for Mn(II), Fe(III), Cu(II), and Pb(II). (The data points are mean of three replicates.)

measured in this work. While the capacity of ha-TiO₂ and the other four comparative TiO₂'s for Fe(III) appeared, surprisingly, to be similar at about 15 mg/g even though we expected (1) the ha-TiO₂ should have performed better, and (2) the values of the other four TiO₂'s should be different. Be that as it may, this is because of the premature precipitation of Fe(OH)₃ when Fe(III) solution was used at higher concentration, hence the concentration of Fe(III) solution was limited to the value given in the Experimental Section. All the data obtained to be about 15 mg/g seem to indicate that the adsorption had not yet reached the upper limit of the capacity each TiO₂ sample could have

Figure 7. Freundlich isotherm plots for Mn(II), Fe(III), Cu(II), and Pb(II). (The data points are mean of three replicates.)

adsorbed when the premature precipitation took place.

Scheme of the adsorption

Surfaces of metal oxides usually show positive charge at low pH and negative charge at high pH with the PZC and IEP in between (Figure 8). For TiO_2 there have been many reports on PZC and IEP (Table 3) and all are below pH 7.

In this work all the isotherm studies were carried out at pH 7 where the surface of TiO_2 would be slightly negative or readily be changing to negative. The adsorption of the cations (Mn(II), Fe(III), Cu(II), and Pb(II)) on this surface can be

Table 3. Literature values for the point of zero charge (PZC) and isoelectric points (IEP) of TiO₂.

PZC	IEP	Refs.
6.2	-	Malati and Smith, 1979
-	6.2	Vassileva et al., 1996
-	5.6	Winkler and Marme, 2000
5.3	-	Malati and Smith, 1979
5.7	-	Poznyak et al., 1999
5.0	5.0	Ottaviani et al., 1985
	PZC 6.2 - 5.3 5.7 5.0	PZC IEP 6.2 - - 6.2 - 5.6 5.3 - 5.7 - 5.0 5.0

Figure 9. Deprotonated surface hydroxyls yielded negatively-charged surface and readily adsorbed cations, adapted from Schindler, 1981. (M = Mn(II), Fe(III), Cu(II), Pb(II)).

illustrated in Figure 9 as shown by Schindler, 1981.

Conclusion

Titanium dioxide synthesized in this work, ha-TiO₂, exists as hydrated amorphous form with high surface area. This ha-TiO₂ can adsorb metal ions, Mn(II), Fe(III), Cu(II) and Pb(II), better than TiO₂ in any other crystalline forms. The adsorption of Mn(II), Cu(II), and Pb(II) on ha-TiO₂ surface clearly conforms to the Langmuir isotherm while the Fe(III) case is somewhat ambiguous since it conforms equally well to both the Langmuir and Freundlich isotherms.

Acknowledgements

M.K. would like to express her sincere thanks to the consortium of Postgraduate Education and Research Program in Chemistry (PERCH) for financial support and also to the Graduate School of Prince of Songkla University for partial support. All the BET surface area data were kindly measured by Dr.Tawan Sooknoi, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Lad Krabang, Bangkok, Thailand. Sample of Degussa P25 used throughout this work was donated by Degussa AG, Frankfurt, Germany, through its agency in Bangkok.

References

- Abe, M., Wang, P., Chitrakar, R., and Tsuji, M. 1989. Synthesis Inorganic Ion-exchange Materials Part XLIX. Adsorption and Desorption Behaviour of Heavy Metal Ions on Hydrated Titanium Dioxide. Analyst, 114: 435-438.
- Arpa, C., Basyilmaz, E., Bektas, S., Genc, Ö., and Yürüm, Y. 2000. Cation Exchange Properties of Low Rank Turkish Coals: Removal of Hg, Cd and Pb from Waste Water. Fuel Process. Technol., 68: 111-120.
- Esumi, K., Hayashi, H., Koide, Y., Suhara, T., and Fukui, H. 1998. Adsorption of Metal Ion and Aromatic Compounds by Anionic Surfactant-Coated Particles of Titanium Dioxide. Colloid. Surface., 144: 201-206.

Songklanakarin J. Sci. Technol.

Vol.27 No.5 Sep. - Oct. 2005

Kanna, M., et al.

- Ha, P.S., Youn, H.-J., Jung, H.S., Hong, K.S., Park, Y. H., and Ko, K.H. 2000. Anatase-Rutile Transition of Precipitated Titanium Oxide with Alcohol Rinsing. J. Colloid Interf. Sci., 223: 16-20.
- Hoffman, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W. 1995. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev., 95: 69-96.
- Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.-M. 2001. Photocatalytic Degradation Pathway of Methylene Blue in Water. Appl. Catal. B: Environ, 31: 145-157.
- Hua, Z., Manping, Z., Zongfeng, X., and Low, G.K-C. 1995. Titanium Dioxide Mediated Photocatalytic Degradation of Monocrotophos. Wat. Res., 29: 2681-2688.
- Khalil, K.M.S. and Zaki, I.Z. 1997. Synthesis of High Surface Area Titania Powders Via Basic Hydrolysis of Titanium(IV) Isopropoxide. Powder Technol., 92: 233-239.
- Kim, M-S. and Chung, J.G. 2001. A Study on the Adsorption Characteristics of Orthophosphates on Rutile-Type Titanium Dioxide in Aqueous Solutions. J. Colliod Interf. Sci., 233: 31-37.
- Kinniburgh, D.G. and Jackson, M.L. 1981. In "Adsorption of Inorganics at Solids-Liquid Interfaces", Anderson, M.A. and Rubin, A.J. (eds.), Ann Arbor Science Publishers, Inc., Michigan, p.93.
- Kosanic', M.M. 1998. Photocatalytic Degradation of Oxalic Acid over TiO₂ Powder, J. Photochem. Photobiol. A: Chem., 119, 119-122.
- Liang, P., Qin, Y., Hu, B., Peng, T., and Jiang, Z. 2001. Nanometer-Size Titanium Dioxide Microcolumn on-line Preconcentration of Trace Metals and their Determination by Inductively Coupled Plasma Atomic Emission Spectrometry in Water. Anal. Chim. Acta., 440: 207-213.
- Malati, M.A., McEvoy, M., and Hervey, C.R. 1982. The Adsorption of Cadmium (II) and Silver (I) Ions on SiO₂ and TiO₂. Surf. Technol., 17: 165-174.
- Malati, M.A. and Smith, A. E. 1979. The Adsorption of the Alkaline Earth Cations on Titanium Dioxide. Powder Technol., 22: 279-282.
- Matthews, R.W. 1991. Photooxidative Degradation of Coloured Organics in Water Using Supported

Catalysts. Wat. Res., 25: 1169-1176.

- Ottaviani, M.F., Ceresa, E.M., and Visca, M. 1985. Cation Adsorption at the TiO₂-Water Interface. J. Colloid Interf. Sci., 108: 114-122.
- Poznyak, S.K., Pergushov, V.I., Kokorin, A.I., Kulak, A.I., and Sclapfer, C.W. 1999. Structure and Electrochemical Properties of Species Formed as a Result of Cu(II) Ion Adsorption onto TiO₂ Nanoparticles. J. Phys. Chem. B.,103:1308-1315.
- Randorn, C., Wongnawa, S., and Boonsin, P. 2004 . Bleaching of Methylene Blue by Hydrated Titanium Dioxide, ScienceAsia, 30: 149-156.
- Robertson, P.K.J., Lawton, L.A., Munch, B., and Rouzade, J. 1997. Destruction of Cyanobacterial Toxins by Semiconductor Photocatalysis. Chem. Commun., 393-394.
- Schindler, P.W. 1981. In "Adsorption of Inorganics at Solids-Liquid Interfacesî, Anderson, M.A. and Rubin, A.J. (eds.), Ann Arbor Science Publishers, Inc., Michigan, p. 6.
- Sclafani, A., Palmisano, L., Schiavello, M. 1990. Influence of the Preparation Methods of TiO₂ on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. J. Phys. Chem., 94: 829-832.
- Tanaka, K., Campule, M.F.V., and Hisanaga, T. 1991. Effect of Crystallinity of TiO₂ on Its Photocatalytic Action. Chem.Phys.Lett., 187: 73-76.
- Tatsuma, T., Tachibana, S., Miwa, T., Tryk, D.A., Fujishima, A. 1999. Remote Bleaching of Methylene blue by UV-Irradiated TiO₂ in the Gas Phase. J. Phys. Chem. B.,103: 8033-8035.
- Vassileva, E., Proinova, I., and Hadjiivanov, K. 1996. Solid-Phase Extraction of Heavy Metal Ions on a High Surface Area Titanium Dioxide (Anatase). Analyst, 121: 607-612.
- Vohra, M.S. and Davis, A.P. 1997. Adsorption of Pb(II), NTA, and Pb(II)-NTA onto TiO₂. J. Colloid Interf. Sci., 194: 59-67.
- Wang, H. and Adesina, A.A. 1997. Photocatalytic Causticization of Sodium Oxalate Using Commercial TiO₂ Particles. Appl. Catal. B., 14: 241-247.
- Winkler, J. and Marme, S. 2000. Titania as a Sorbent in Normal-Phase Liquid Chromatography. J. Chromatogr. A., 888: 51-62.

Songklanakarin J. Sci. Technol.	Adsorption behavior of some metal ions
Vol.27 No.5 Sep Oct. 2005	26 Kanna, M., <i>et al.</i>
Youn, HJ., Ha, P.S., Jung, H.S., Hong, K.S., Park, Y.	Zhang, JY., Boyd, I.W., O'Sullivan, B.J., Hurley, P.K.,
H., and Ko, K.H. 1999. Alcohol Rinsing and	Kelly, P.V., and Senateur, JP. 2002. Nano-
Crystallization Behaviour of Precipitated	crystalline TiO ₂ Films Studies by Optical, XRD
Titanium Dioxide. J. Colloid Interf. Sci., 211:	and FTIR Spectroscopy. J. Non-Cryst. Solids,
321-325.	303: 134-138.