Joint analysis of shear wave velocity from SH-wave refraction and MASW techniques for SPT-N estimation

Sawasdee Yordkayhun1,2,*, Chedtaporn Sujitapan1 and Tanit Chalermyanont3

1Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

2Geophysics Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

3Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand.

*Corresponding author.

Email address: sawasdee.y@psu.ac.th

(Fax: +66 74-558849 / Phone: +66 74-288765)
Abstract

Horizontally polarized shear wave (SH) refraction and multichannel analysis of surface wave (MASW) methods have been carried out in Hatyai City, southern Thailand, a pilot study for site classification, part of the National Earthquake Hazards Reduction Program (NEHRP), Thailand. The objectives of this study are the comparison of the efficiencies of different shear wave velocity (Vs) determination techniques and the use of Vs measurements of the prediction of standard penetration resistance (SPT-N). Good correlation between all Vs profiles and SPT-N values and local lithology are observed. However, there are systematic differences between SH-refraction based-Vs and MASW based-Vs, which might be explained by possible converted waves, limitations of the assumptions used, poor quality of the acquired data, and limitations of the inversion procedures of the methods applied. From the integrated use of Vs from both methods an empirical formula to describe the correlation between Vs and SPT-N values has been proposed and can be used to estimate geotechnical parameters in areas where no borehole or geophysical investigation exist.

Keywords: SH-wave refraction, MASW, SPT-N, shear wave velocity, seismics

1. Introduction

From geotechnical engineering point of view, standard penetration resistance (SPT-N) obtained from standard penetration test is a fundamental indicator of soil stiffness and it is recognized in evaluating the ground characteristics for building sites. However, soil classification based on SPT-N value is somewhat qualitative
evaluation (Suto, 2011). In addition to the borehole requirement, it is often cost
effective and unsuitable to be implemented routinely in urban and large survey area.
An alternative method is coming with the use of shear wave velocities (Vs), a
quantitative parameter describing the dynamic properties of soils.

Many researchers have shown that Vs can be used in a broad range of
applications, including foundation stiffness assessment, earthquake site response,
liquefaction potential, site classification for national earthquake hazards reduction
programs (NEHRPs), soil compaction, and detection of cavities, tunnels and sinkholes
(Seed et al., 1983; Kayabali, 1996; Andrus and Stokoe, 2000; Leparoux et al., 2000;
Youd and Idriss, 2001; BSC, 2003; Ergina et al., 2004; Kanli et al., 2006;
Anbazhagan and Sitharam, 2008; Karastathis et al., 2010; Sloan et al., 2009; Patel,

Practically, Vs can be determined either in invasive (e.g., downhole or
crosshole and suspension PS logging) or non-invasive methods (e.g., surface seismic
methods and empirical relation with N-value from Standard Penetration Test, SPT).
Disadvantages of the invasive methods are that the measurements are quite expensive
and difficult to conduct in urban areas. For seismic methods, SH-wave refraction is
considered to be standard technique for Vs determination. However, the velocity
inversions, hidden layers problems and interfering of P-wave and S-wave arrivals can
lead to the pitfalls in data interpretation. Recently, a new technique for Vs
determination, namely multichannel analysis of surface wave (MASW) has been
developed (Park et al., 1998). According to coherent event in shot records and its
efficiency application, analyzing surface wave has been increasingly used.

Generally, both SPT-N data and geophysical data do not often exist in a
particular area. Statistical analysis of correlation between these parameters is an
alternate method (Akin et al., 2011) to estimate SPT-N values or Vs with convenience, less cost, and without additional investigations and data acquisition. Several empirical relationships exist for different lithologies and they appear to be site dependent (e.g., Hasançebi and Ulusay, 2007; Tsiambaos and Sabatanakis, 2011).

As a part of NEHRP soil classification study for Hatyai city, southern Thailand, Vs data of geological units exposed in this area are essential parts for site response analyses. The average shear wave velocity at the top 30 m of subsurface (Vs(30)) is important in soil classification and characterization according to NEHRP and International Building code (IBC). This parameter can be calculated as follows (Dobry et al., 2000),

\[
Vs(30) = \frac{30}{\sum_{i=1}^{n} (h_i / Vs_i)}
\]

where \(h_i\) and \(Vs_i\) denote the thickness and Vs of the \(i^{th}\) layer in the upper 30 m of the total \(n\) layers, respectively.

In a preliminary test of the project, shear wave velocities derived from two methods including SH-wave refraction and MASW were tested at three test sites where geotechnical parameters from boreholes have been previously investigated. This test allowed us to compare the performance of the methods for Vs determination. In order to benefit and utilize the geophysical data, beside this comparison, attempt is made to develop the empirical relationship between Vs and SPT-N corresponding to a local scale of the areas based on joint analysis of Vs data from the two methods.

2. Geology

Located in Songkhla Province, southern Thailand, Hatyai City is known as a principal administrative, commercial, educational and cultural city. The city has been
recorded as low seismicity region (Sutiwanich et al., 2012). The average elevation of this area is about 0-20 m above mean sea level. Hatyai City is part of the Hatyai Basin, which is formed by the horst-graben structures. Morphological evidences come from the surrounding north-south trending mountain ranges (Sawata et al., 1983). The eastern and western boundaries can be characterized by granite intrusions and metamorphic rocks that act as the basin basement. The basin geometry estimated from geophysical studies is approximately 60 km long, 20 km wide and 1 km deep filled with sediments of Carboniferous to Triassic age (Lohawijarn, 2005). These units are covered by Quaternary deposits consisting of semi-consolidated clay, silt, sand, and gravel. Unconsolidated Quaternary sediments found in this area are useful in site investigation, foundation, groundwater and environmental studies.

The Quaternary alluvial unit (Qa) and colluvium unit (Qc) broadly cover the study area (Figure 1). The test sites are located in the colluvium unit, consisting of unconsolidated sediment of sand, gravel, clay and silt that are partly weathered from host rock and mostly found near the hill and outcrop boundaries (Saardsud and Srisangjun, 2002).

3. Methods

3.1 SH-wave refraction method

Seismic refraction method is a common method applied for near surface investigations. The principle of the method uses refracted wave across the boundary between layers of different physical properties governing the Snell’s law and Huygen’s principle. By recording elastic waves using a series of geophones placed on the ground (Figure 2a), seismic traveltime versus distances can be recorded and used as input for data interpretation. A number of techniques have been available for data
interpretation, including intercept time method (Hagedoorn, 1959), reciprocal or delay
time method (Hawkins, 1961; Palmer, 1980), ray tracing method (Leung, 1995), and
inversion and tomography method (Zhang and Toksöz, 1998; Yordkayhun et al.,
2009; Yordkayhun, 2011).
In this study, SH-refraction data were recorded using a 24-channel Geometrics
Smartseis seismograph. Twelve 14-Hz horizontal component geophones were
deployed at 5 m intervals and oriented in orthogonal to the direction of wave
propagation during acquisition. The S-wave was generated by hitting the ends of a
wooden timber (shear wave impact plate) laid perpendicular to the geophone spread.
Shot points were located at five positions, including near and far offset on both ends
and at the center of the geophone line. Vertical stacks (or hammer blows) were done
at each shot point to enhance the signal to noise ratio. Table 1 summarizes acquisition
parameters used for this study.
In this work, Vs model was generated based on tomography methods
(Yordkayhun, 2011). The first arrivals to each geophone were picked and used as
input to reconstruct the velocity model based on a non-linear least squares inversion.
Both automatic and manual picking were performed to avoid picking error at the far
offset traces. The inversion procedures started from estimation of an initial model. We
used simple two-layer velocity models produced by the time-term method as an initial
model to constrain the reliability of the tomographic inversion. Next, predicted
traveltimes (forward model) were calculated. The calculated traveltimes were then
compared to the observed traveltimes. The residuals between them were minimized by
updating the model through the iterative inversion process until the acceptable model
was obtained. In this study, each inversion was run with 10 iterations. By testing on
the initial model, RMS errors between the picked and calculated traveltimes are in the range of 2-5 ms and final model converges within five iterations.

3.2 MASW method

MASW method utilized phase velocity of surface wave (Rayleigh wave or ground roll) that are typically considered as noise for seismic surveys, to estimate Vs profiles (Park et al., 1998). Rayleigh wave phase velocity is a function of frequency and subsurface properties including Vp, Vs, density, and layer thickness. In a homogeneous medium, a Rayleigh wave has phase velocity ranges from 0.87 to 0.96 of Vs (Richart et al., 1970) over a range of Poisson’s ratio, whereas it has dispersion characteristics in a vertically heterogeneous medium (Figure 2b). MASW data are recorded as the same manner as the conventional seismic reflection/refraction acquisition (Figure 2a), except the low natural frequency geophone (~4.5 Hz) is typically used (Xia et al., 1999).

In this study, MASW data were acquired at the same location and similarly oriented with SH-refraction recording. Data were recorded with twenty-four 14-Hz vertical component geophones with the geophone spacing and the near offset of 2 m and 2.5-10 m, respectively. The source was a sledgehammer vertically hitting a metal plate (Figure 2b). Shot points were located at both ends of the line. Acquisition parameters used for this study is outlined in Table 1. The MASW data processing relies on the principles of the dispersion analysis and inverse theory described by Park et al. (1998) and Xia et al. (1999). First, dispersion energy was generated using wavefield transformation of a shot gather from time-space (t-x) domain to phase velocity-frequency (f-v) domain. In this method, the Fourier transformation was applied to the time axis of the shot gather and slant stacking with different values of
slowness was applied to obtain the phase velocity for a particular frequency and the
maximum stacked amplitude is a result of the determined slowness. Then a dispersion
curve was picked at the peaks of dispersion energy over different frequency values
and quality control was done by considering the fundamental mode surface waves of
the signal and their signal to noise ratio. After that, an iterative weighted least-squares
inverse of dispersion curve was performed by setting up a suitable initial model and
adjusting the model parameter values (the Vs) with the objective of minimizing the
error between the calculated and picked dispersion curve. For inversion algorithm, we
used gradient iterative solutions to the weighted equation by the Levenberg–
Marquardt (L-M) and the singular-value decomposition (SVD) techniques (Xia et al.,
1999). Xia et al. (1999) mentioned that surface wave data are not sensitive to Vp and
density, thus a five-layer model with fixed Poission’s ratio and density of 0.40 and 2.0
g/cm³, respectively were chosen for the inversion. After 10 iterations, a final 1D
velocity profile locating at the middle of the geophone spread was obtained.

Apart from MASW analysis, the first arrival times of the same shot gathers
can be used to establish P-wave velocity (Vp) model since forward and reverse shots
of MASW records were performed as the same manner as the SH-refraction
geometry. Note that the Vp model was generated based on tomographic inversion
using the initial model derived from the traveltime curves.

3.3 Relationship between Vs and SPT-N values

Over the few decades, SPT-N value estimation for different soil types has
been derived from Vs by means of an empirical relation (Ohta, et al., 1978; Imai and
Tonouchi, 1982; Kokusho and Yoshida, 1997; Hasançebi and Ulusay, 2007; Dikmen,
2009; Brandenberg et al., 2010; Maheswari et al., 2010; Akin et al., 2011; Suto, 2011;
Tsiambaos and Sabatanakis, 2011; Marto et al., 2013). These relationships are generally expressed in the power–law forms of:

\[V_s = aN^k \]

(2)

In the log scale it can be written as

\[\ln V_s = \ln a + k \ln N \]

(3)

where \(a \) and \(k \) are constants that can be practically determined by performing linear regression to the cross plots of SPT-N values and Vs in the log-log space. The variations of relationships depend on the samples and influence of lithology, soil type, age, and depth (Tsiambaos and Sabatanakis, 2011). However, this study concentrates on the correlations which are only applicable for all soil types and regions. Therefore, the empirical formula developed by integrating 27 published correlations around the world including from Japan, U.S.A., Greece, Taiwan, Turkey, India, Iran, South Korea, and others, were used for comparison with our results and was given for all soil types as (Marto et al., 2013):

\[V_s = 93.67N^{0.389} \]

(4)

Note that Equation 4 utilizes the statistical analysis of existing Vs-N value correlations deriving from various techniques, including invasive and non-invasive methods as well as laboratory test. Even though the empirical correlations at local scale for various regions tend to be site dependent, we believe that the established universal correlation can be used as a guideline for any region where the existing correlations are not available.

4. Results and discussions

4.1 Comparison of the Vs from SH-wave refraction and MASW methods
By comparing raw shot gathers (Figure 3a and 4a), the signal to noise ratio of MASW data is relatively higher than that of SH-refraction data. The dominated high amplitude, low frequency surface wave in the MASW data make dispersion curve able to pick easily, whereas the first arrivals at the far offsets in SH-refraction data are not clear to pick. This implies that the source energy is slightly lower or attenuation of shear wave energy is higher at a long distance. First break pick accuracy has effects on the final results, especially when low frequency data are encountered. We estimated picking uncertainties using dominant frequency of the raw data and evaluating the reciprocity of traveltimes (Figure 3b). In Figure 3a, power spectrum of the signal shows dominant frequency in a range of 20–100 Hz, suggesting a picking error on the order of 3–10 ms according to the one quarter dominant period criterion. The effects of source energy limitation are noticeable at far offset shots, when traveltimes could not be picked accurately. Thus, depth of investigation (ray coverage) was limited at some test sites (Figure 3c). For MASW data, however, the penetration depth may be also limited due to the lack of low frequency component of surface wave (no dispersion energy below 5 Hz). Although frequency bandwidth of surface wave are observed in the range of 5–25 Hz in dispersion curve (Figure 4b), examining the power spectrum in the MASW data showed that energy below 5 Hz is greatly attenuated by 30 dB (Figure 4a). This indicates that the natural frequency of the geophones (14 Hz) and the active MASW source have some effect on the data. In fact, if 14 Hz geophones are critically damped, Uyanik et al. (2013) pointed out that the signal to noise ratio of data would be valid down to 7 Hz since the relative velocity response of the geophones at 7 Hz would be attenuated by 12 dB. Some apparent errors may be also the results of dispersion curve picking because low frequency random noise can smear the dispersion energy. In Figure 4, assuming 10
Hz is minimum frequency that was picked with high confidence (signal to noise ratio of higher than 0.6) and corresponding phase velocity of Rayleigh wave is 400 m/s, maximum depth of investigation (one-half of the longest wavelength) would be about 20 m. Consequently, combining a passive MASW source with lower natural frequency geophones might be recommended to improve the accuracy at greater depth. Passive surface wave techniques measure low frequency noise field that can originate from many directions, such as ocean wave, traffic, factory activities and wind. Therefore, geophone arrangement in a two-dimensional array (e.g., triangle, circle, semi-circle and “L-shape” arrays) provides a reliable estimation of surface wave phase velocity with a relatively small number of geophones. However, for active source, investigation using linear array and a large energy source is somewhat difficult, particularly in urban environment.

Inverted Vs profiles for the three test sites (Site 1 to 3) along with Vp, SPT-N values and lithology are illustrated in Figure 5. It is noted that the maximum depths of investigation varied from site to site and only the portion of data that respective borehole depth is displayed for comparison. The general trend of linearly increasing velocity with depth of both Vs data sets are approximately the same beyond the borehole depth. Structurally, the Vs profiles are in the good agreement with SPT-N values for all test sites. Low N value and Vs correspond to loose materials which are found at near surface. Note that the SH-refraction based-Vs (range of about 300-700 m/s) are characterized by relatively higher values (by 28% on average) than MASW based-Vs (range of about 200-500 m/s). These results are consistent with observation by the other studies (e.g., Turesson, 2007). Regarding to this systematic difference, we consider that the Vs from SH-refraction is slightly overestimated due to its assumption and inversion error as mentioned by Schwenk et al. (2012). For the
assumption error, the layer may be misinterpreted as incorporating a hidden layer, resulting in the layer thickness or velocity may increase. This evidence can be seen in Site 1 and 2 (Figure 5b) where a case for Vs inversion is observed, corresponding to a low-velocity sand beneath a high-velocity clay layer. Also, a low-velocity near-surface layer can cause its depth and velocity to be overestimated as mentioned by Yordkayhun et al. (2009). Static corrections for tomographic inversion algorithm may improve accuracy and resolution of the results. For the inversion error, resolution is often degraded and has artifacts resulting from ray coverage and smoothing imposed to stabilize the inversion. However, Turesson (2007) mentioned that in case of a sharp high-contrast boundary traditional refraction methods are suitable. In this study, abruptly changing soil stiffness may exist as seen by the high N values at the deepest layer. If this is the case, Vs determined by MASW may degrade due to the assumption of constant Poisson’s ratio used in the inversion.

It is interesting to note that a part of SH-wave energy is possibly converted into P-wave energy propagating along the interface in case the dipping layers are present (Xia et al., 2002). This can be verified by the Vp and SH-refraction based-Vs that are very close to each other as observed in Site 1 (Figure 5a). Besides tracking the Vp/Vs values, the Poisson’s ratio (σ) can be determined simply by:

\[\sigma = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - V_s^2)} \] \hspace{1cm} (5)

At Site 2 (Figure 5b), the abrupt change in Vp of slightly higher than 1,500 m/s and the calculated Poisson’s ratio of higher than 0.4 indicates water saturated layer below 3 m depth. Generally, Vs are less affected by water table or by pore fluids than Vp since fluids have no resistance to shear (Sheriff and Geldart, 1995). Here, the depth to water table estimated from Vp may differ from the borehole information since they
were observed at different times. However, the high Vp/Vs values that characterized depths below 4 m in Site 3 (Figure 5c) would be subjected to layers with high clayey–silt content as mentioned by Sinnanini and Torrese (2004).

To obtain a more quantitative comparison, the Vs(30) is considered because it is representative indicator in the site classification and building codes. The Vs(30) and NEHRP site classification obtained from the MASW and SH-refraction analyses conducted in the test sites are listed in Table 2. According to the Vs(30), all test sites are defined as dense soil and soft rock (site class C) based on SH-refraction data, while two test sites are found to be stiff soils (site class D) based on MASW data. Discrepancies between the two methods indicate the systematic difference of the derived Vs. To assess the reliability of Vs(30), we compare the derived Vs(30) values with the global Vs(30) map provided by the USGS (2013). Although the global Vs(30) map was developed based on correlation between topography and surficial geology which its spatial resolution of about 1 km, it can be used as a guideline value for site assessment in the area. It is clearly seen that the picked global Vs(30) at the test sites (Table 2) tent to have better agreement with Vs(30) from MASW data. However, it is possible that variations in subsurface lithology partially contributed to the overestimation of Vs(30). Since the hard rock is found to be less than 30 m depth at the test sites, Vs of the lowermost layer was assumed for the rest of the depth.

4.2 Empirical relationship between Vs and SPT-N values at the test sites

At the beginning of the Vs-N correlation development from geophysical data, three main groups according to the two methods and the average model were considered. Vs results derived from SH-refraction, MASW and average model are plotted against SPT-N values in the normal and log-log scale in order to develop an empirical relationship (Figure 6). The distributions of Vs with SPT-N value suggest
the non-linear relationship between the two parameters. The following power-law expressions were proposed:

1. \[V_s = 270.10N^{0.17}, \text{ for SH-refraction (}R^2=0.46\text{)} \]
2. \[V_s = 206.21N^{0.17}, \text{ for MASW (}R^2=0.38\text{)} \]
3. \[V_s = 238.38N^{0.17}, \text{ for average model (}R^2=0.44\text{)} \]

In these relationships, the curvature of the relationship controlling by the exponent values (b) appear to be consistent, while the constant that controls the amplitude (a) are different. This implies that the correlations are mostly affected from the derived Vs values.

As seen in Figure 6, the smallest deviation of Vs for MASW data from the proposed relationship of Marto et al. (2013) suggests that the Vs values from MASW are more reliable. It should be noticed that the relationship from the average model has a slightly higher correlation coefficient compared to the ones from MASW. This reveals the influence of statistical analysis in the relation development.

To account for the reliability of Vs from MASW, number of data samples and systematic differences between the two methods, an adapted relationship was considered. Accordingly, a cross plot between the Vs values from the two methods is used to identify their correlation (Figure 7a). A simple linear correlation between the two data sets is proposed as:

\[(\text{MASW based-Vs}) = 0.75 (\text{SH-refraction based-Vs}), \quad (R^2=0.89) \]

By adjusting the Vs from SH-refraction to the Vs from MASW using Equation 9, the Vs-N distribution is presented in Figure 7b. Consequently, the proposed empirical relationship for the test sites can be written as:

\[V_s = 204.39N^{0.17} \]

and its reciprocal is
Joint analysis of the Vs from both methods provide remarkable better data fit ($R^2=0.42$) than the equations based on MASW data alone ($R^2=0.38$) (Figure 6b). Although data errors may be introduced by this statistical analysis, we observed that the exponent constant value in the adapted relationship is stable. Moreover, the constant that control it’s amplitude slightly converge to the proposed equation of Marto et al. (2013).

4.3 Verification of the developed empirical relationship

The Vs profile from MASW data of Site 4 is selected to verify the reliability of the developed empirical formula. Figure 8 shows comparison of the measured and the predicted SPT-N values based on Equations 6-10 (present study) and Equation 4 (Marto et al., 2013). The general trends of the predicted SPT-N values appear to be similar and consistent with lithology information. It is seen that the predicted N values based on the developed formula are almost equal to the measured N values beyond 11 m depth (the first layer), whereas the predicted N values according to Marto et al. (2013) fit the observed data quite well below 11 m depth (the second layer). This suggests that the effect of soil types and depth may be significant.

In an attempt to consider the depth effect, multiple regression analysis was performed on the adjusted MASW data. Assuming the Vs is influenced by SPT-N value and depth (z), the power-law form can be proposed as:

$$V_s = 209.96N^{0.105}z^{0.076}, \quad (R^2=0.45) \quad (12)$$

The comparing results of the newly adapted formula including depth effects (purple line in Figure 8) confirmed that depth has small effect on the N value prediction in
this area since the predicted N values became diverge from the measured N values. Thus, it can be concluded that the depth-independent formula (Equation 10 and red line in Figure 8) appear to be reasonable agreement, especially for low N values. This means that soil types and variations play a major role in the Vs-N value correlation as observed elsewhere (e.g., Anbazhagan et al., 2013). Adding more data from different sedimentary units is advisable to improve the accuracy of the developed formula. However, it is insufficient to judge that the present study does not have the potential for application due to the fact that the existing N values have been determined more than 10 years ago at this site. Mismatch of N values at the deeper subsurface might be due to partly land usage and filling.

5. Conclusions

Vs profiles at the test sites have been determined to provide data for site response analyses as part of the NEHRP site classification study in Hatyai City. SH-wave refraction and MASW methods were tested where the SPT-N values from in-situ measurements were available. This test provides the opportunity to assess the methods efficiency and to develop the empirical relationship between Vs and SPT-N values in the area. The major conclusions are discussed below:

1) Field implementations of the two methods are comparable, except the source energy has some precautions when deeper investigation is needed.

2) Although there are good agreement between the Vs, SPT-N values and lithology at the test sites, it appears to be systematic differences between the two methods as the SH-refraction based-Vs are characterized by higher values than the MASW based-Vs. Discrepancies of Vs from the two methods could
be contributed to several reasons, including assumptions used, site-specific differences, data quality, and inversion processes.

3) Pitfalls in Vs determination from SH-refraction data are hidden layers and statics problems, mode conversion of waves, accuracy of picking first arrivals, setting up a reasonable initial model and stability of inversion. Whereas the pitfalls in Vs determination from MASW data are interference of random noise, lacking of the low frequencies surface wave, accuracy of picking dispersion curve, setting up a reasonable initial model, and stability of inversion.

4) Based on comparison of Vs(30) with the global Vs(30) map, lithology information and comparison with the Vp, reliable of Vs at the upper 20 m depth using MASW are promising. However, in case a strong Vs contrast exist at shallow depth, the Vs for the basement from the SH-refraction appear to be better than that of the MASW.

5) Combining the two methods of Vs determination, the empirical correlation between Vs and SPT-N has been expressed as a power equation. This formula can be used to estimate SPT-N values in the area and vicinity where in-situ tests could not be carried out in some restricted areas. Furthermore, geophysical based-Vs is considered to be a non-invasive, cheaper, and faster method compared to borehole investigations.

6) The empirical formula presented here still has significant uncertainties and has been applied as the representative of all soil types within the specific geological unit. To gain a higher confident among geophysicists and geotechnical engineers, the inclusion of more samples, related information
from soil types and more reliable of Vs at the greater depth would be recommended for future improvement.

Acknowledgements

This study was supported by Prince of Songkla University (PSU) research grants, contract no. SCI550150S. We would like to thank Department of Physics, Faculty of Science, PSU, for supporting the field equipment. Anonymous reviewers are thanked for their helpful comments and suggestions in improving the manuscript.

References

Yordkayhun, S. Tryggvason, A. Norden, B., Juhlin, C. and Bergman, B. 2009. 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany. Geophysics. 74, G1–G15.

Table captions

Table 1. Acquisition parameters and equipment.

Table 2. Comparison of Vs(30) and NEHRP site classification based on Vs derived from geophysical methods and USGS database at the test sites.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SH-refraction</th>
<th>MASW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy sources</td>
<td>10 kg sledgehammer</td>
<td>10 kg sledgehammer</td>
</tr>
<tr>
<td>Shot spacing</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Natural frequency of geophone</td>
<td>14 Hz (horizontal)</td>
<td>14 Hz (vertical)</td>
</tr>
<tr>
<td>Geophone spacing</td>
<td>5 m</td>
<td>2.5 m</td>
</tr>
<tr>
<td>Offset Min/Max</td>
<td>2.5/60 m</td>
<td>2.5/60 m</td>
</tr>
<tr>
<td>Field geometry</td>
<td>Fixed spread</td>
<td>Fixed spread</td>
</tr>
<tr>
<td>Recording system</td>
<td>Geometric SmartSeis</td>
<td>Geometric SmartSeis</td>
</tr>
<tr>
<td>No. of channels</td>
<td>12 channels</td>
<td>24 channels</td>
</tr>
<tr>
<td>Record length</td>
<td>1,000 ms</td>
<td>1,000 ms</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>0.5 ms</td>
<td>0.5 ms</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>Test site: location (UTM, WGS 84, Zone 47)</th>
<th>Vs(30) (m/s)</th>
<th>NEHRP site class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SH-refraction</td>
<td>MASW</td>
</tr>
<tr>
<td>Site 1: (665313, 774719)</td>
<td>411</td>
<td>310</td>
</tr>
<tr>
<td>Site 2: (665416, 775159)</td>
<td>466</td>
<td>337</td>
</tr>
<tr>
<td>Site 3: (665051, 776255)</td>
<td>596</td>
<td>472</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1. Geologic map of study area showing the test site locations (red dot). Descriptions for the geological units are as following: Qa = Alluvial deposits: Quaternary, Qc = Colluvial deposits: Quaternary, Qt = Terrace deposits: Quaternary, Cy = Shale, chert and conglomerate: Carboniferous, and Trgr = Granite: Triassic.

Figure 2. (a) SH-refraction field geometry. Note that SH-wave energy source and horizontal geophone are used. (b) MASW energy source is similar to the conventional P-wave energy source (left). The surface wave generated from this source has dispersion characteristic (right).

Figure 3. SH-wave velocity model from tomographic analysis. (a) Raw shot gather with first arrivals picked and power spectrum of the signal. (b) Comparison of calculated and observed data. (c) Final tomography model with ray coverage.

Figure 4. MASW data processing steps. a) Raw shot gather with power spectrum of the signal, b) dispersion characteristics and picking and c) final Vs model.

Figure 5. Correlation of Vs and lithology, SPT-N, and Vp for the three test sites.

Figure 6. Relationship between Vs and SPT-N values displaying in normal (a) and log-log scale (b).
Figure 7. a) Cross plot of the Vs from MASW and the Vs from MASW data. b) Relationship between joint analysis of Vs and SPT-N values.

Figure 8. Comparison of the measured SPT-N values and the predicted SPT-N values at Site 4 based on SH-refraction, MASW, average model, joint model (red line), depth effect model (purple line) and Marto et al. (2013).
Figure 1.

a) SH-refraction field geometry

Figure 2.

b) MASW source and surface wave dispersion characteristic
Figure 3.

a) RECORD #26 (Source Station = 26)

b) Record = 26; Mid-station = 26; Spread size = 25 (m); Source Offset = N/A

10-LAYER VELOCITY MODEL (Record = 26)
(Mid-Station = 37.5)
Figure 4.

a) Site 1

Soil description

- Lateric fill
- Medium, yellowish-reddish brown, gray, sandy CLAY
- Loose to very dense, light gray, fine to coarse, silty SAND

b) Site 2

Soil description

- Rock and soil fill
- Medium, yellowish brown, silty fine SAND
- Very stiff to hard, reddish brown, sandy CLAY
- Very dense, reddish brown, clayey SAND

Water table

Water table

Water table
Figure 5.

![Graph showing Vs (m/s) vs. N (blows/ft)]

- SH-refraction
- MASW
- Marto et al. (2013)
- Average
- Best fit (SH-refraction)
- Best fit (MASW)
- Best fit (Average)

Figure 6.

![Graph showing Vs (m/s) vs. N (blows/ft)]

- SH-refraction
- MASW
- Marto et al. (2013)
- Average
- $V_s=270.10N^{0.17}$, $R^2=0.46$
- $V_s=206.21N^{0.17}$, $R^2=0.38$
- $V_s=238.38N^{0.17}$, $R^2=0.44$
Figure 7.
Figure 8.

<table>
<thead>
<tr>
<th>Site 4</th>
<th>Soil description</th>
<th>Vs (m/s)</th>
<th>N (blows/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measured-N</td>
</tr>
<tr>
<td></td>
<td>Soft clay or loose sand</td>
<td>0</td>
<td>Marto et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Stiff to hard silty clay or medium to dense sand</td>
<td>100</td>
<td>SH-refraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>MASW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td>MASW-SH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth effect</td>
</tr>
</tbody>
</table>