The relationship between lameness and reproductive performance in dairy cows raised in small holder farms, Thailand.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Songklanakarin Journal of Science and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SJST-2018-0431.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Short Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Feb-2019</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Ratanapob, Niorn; Faculty of Veterinary Medicine, Kasetart University, Department of Large Animal and Wildlife Clinical Sciences
Thiangtum, Wandee; Faculty of Veterinary Medicine, Kasetart University, Department of Large Animal and Wildlife Clinical Sciences
Rukkwamsuk, Theera; Kasetart University, Large Animal and Wildlife Clinical Sciences
Srisomrun, Smit; Faculty of Veterinary Medicine, Kasetart University, Department of Large Animal and Wildlife Clinical Sciences
Panneum, Supachart; Faculty of Veterinary Medicine, Kasetart University, Department of Large Animal and Wildlife Clinical Sciences
Arunvipas, Pipat; Kasetsart University, Faculty of Veterinary Medicine |
| Keyword: | Lameness, reproductive performance, dairy cows, small holder farms |
Short Communication

The relationship between lameness and reproductive performance in dairy cows raised in small holder farms, Thailand

Niorn Ratanapob¹ Wandee Thiangtum¹ Theera Rukkwamsuk¹ Smit Srisomrun²
Supachart Panneum³ and Pipat Arunvipas¹*

Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, 73140 THAILAND
² Kasetsart University Veterinary Teaching Hospital Kamphangsaen, Nakhon Pathom, 73140 THAILAND
³ Kasetsart University Veterinary Teaching Hospital Nong Pho, Ratchaburi 70120 THAILAND

* corresponding author, Email address: fvetpia@ku.ac.th

Abstract

The aim of this study was to investigate the relationship between lameness and reproductive performance in dairy cows. A retrospective case-control study was conducted in 20 farms (326 cows) with high prevalence (> 30%) and 20 farms (331 cows) with low prevalence (< 10%) of lameness. Cows having locomotion score ≥ 3 were classified as lame. Reproductive data were collected and analyzed. Calving to calving interval, calving to first service interval, services per conception and pregnancy rate in lame cows were poorer than non-lame cows (p < 0.05). The severity of reproductive consequences was greater in high prevalence farms than in low prevalence farms.
Cows classified as lame had 3.5 times more likely to be non-pregnant compared with non-lame cows (P = 0.0001). Attributable proportion analysis indicated that non-pregnancy in lame cows would be reduced by 70%, if lameness had been prevented.

Keywords: Lameness, reproductive performance, dairy cow, small holder farm

Introduction

Lameness is considered to be one of the most important disorders in dairy cattle. The problem has negative impacts on both animal welfare and farm economy (Whay, Main, Green, & Webster, 2003). Most economic consequences caused by lameness result from involuntary culling (Hernandez, Shearer, & Webb, 2001; Sprecher, Hosteller, & Kaneene, 1997), long-term milk yield reduction (Green, Hedges, Schukken, Blowey, & Packington, 2002), increased labor, discarded milk (Enting, Kooij, Dijkhuizen, Huirne, & Noordhuizen-Stassen, 1997), impaired reproductive efficiency and required hormonal treatment for breeding management (Sogstad, Østerås, & Fjeldaas, 2006). For effects on reproductive performance, prolonged calving to first service interval, calving to conception interval (Orgel, Ruddat, & Hoedemaker, 2016), calving to calving interval and increased number of services per conception (Sprecher et al., 1997; Sogstad et al., 2006; Alawneh, Laven, & Stevenson, 2011) have been reported as consequences of lameness in cattle. These consequences will disrupt dairy farming operation because generally milk cannot be produced without getting pregnant.

Approximately 80% of Thai dairy farms are small holder farms with a number of lactating cows less than 30 heads per farm and run by family members (Department of Livestock Development [DLD], 2018). The western part of Thailand is a big area of...
dairy industry. Housing is one of the major underlying factors of lameness. Tie-stall system has been generally used in western Thailand for more than 60 years. In a tie-stall barn, the lying, standing, milking and feeding areas are restricted to one place. Kara, Galic, and Koyuncu (2011) reported a higher mean locomotion score in cows raised in tie-stall system compared to cows raised in free-stall system. A study in Thai dairy farms also found that tie-stall system was a risk factor of lameness. The mean prevalence of lameness in lactating cows found in that study was 22%, ranging from 0% to 70% (Wongsanit, Srisomrun, Kananub, Panneum, & Arunvipas, 2015). Whereas, a study conducted in Malaysian dairy farms reported the average lameness prevalence of 19%, ranging between 10% and 33% in each farm (Sadiq, Ramanoon, Mansor, Syed-Hussian, & Mossadeq, 2017). Despite the knowledge that lameness has detrimental effects on reproductive performance, limited studies have examined the relationship between lameness and reproductive performance in small holder farms. Therefore, our study was performed to reveal consequences of lameness on reproductive performance in small holder dairy farms.

Materials and Methods

Study design

A retrospective case-control study was conducted by using herd prevalence of lameness obtained from a previous study (Wongsanit et al., 2015). Twenty farms with a high prevalence of lameness (> 30%) were defined as cases and 20 farms with a lameness prevalence of < 10% were defined as controls. A locomotion score was assigned to all lactating cows in these farms during a regular farm visit, regardless of
their days in milk. The 5-point scoring system developed by Sprecher et al. (1997) was used. Cows scoring ≥ 3 were classified as clinically lame. All claw lesions were recorded on the chart developed by Kasetsart University Veterinary Teaching Hospital for identifying claw lesions during hoof trimming. Characteristics of herd and cows were collected from dairy farmers during the visit.

All reproductive data were retrieved from history recorded by the Farm Service Unit, Kasetsart Veterinary Teaching Hospital Nong Pho. Calving to calving interval, calving to first service interval, services per conception and pregnancy rate were calculated. Data from dairy cows with clinical reproductive problems, mastitis and other illnesses were excluded from the analyses.

Statistical analyses

All reproductive parameters of interest were analyzed with descriptive statistics. Student t-test was used to compare the differences of means of reproductive parameters. A conditional logistic regression was used to estimate the effect of lameness on pregnancy. A p-value of < 0.05 was considered statistically significant. All analyses were conducted using the statistical software package STATA (version 13.0, Stata Corp., College Station, TX).

Results

The mean number of lactating cows per farms was 16±16 and all cows were crossbred Holstein-Friesian. There were 765 dairy cows in the study with 362 cows were in high prevalence farms and 403 cows were in low prevalence farms. Data from
dairy cows with clinical reproductive problems (n = 98), clinical mastitis (n = 2) and
other clinical illnesses (n = 8) were excluded. There were 657 dairy cows in the final
dataset, 326 cows in high prevalence farms and 331 cows in low prevalence farms.
Based on calving to calving interval, calving to first service interval, services per
conception and pregnancy rate, lame cows in high prevalence farms had poorer
reproductive performance compared to non-lame cows. In low prevalence farms,
calving to calving and calving to first service intervals were higher in lame than non-
lame cows. The pregnancy rate of lame tend to be lower than non-lame cows; whereas,
services per conception were not statistically different in low prevalence farms. Overall,
the severity of reproductive consequences was greater in high prevalence farms than in
low prevalence farms (Table 1).

Claw lesions found in the study population were white line disease (WL; 61.2%), bruise sole (BS; 30.6%), sole ulcer (SU; 24.5%), double sole (DS; 16.0%) and white line separation (WLS; 15.8%). Cows that were diagnosed with WL and SU had 67 and 63 days longer of calving to calving interval, respectively. Calving to first service intervals of cows with WL and SU were longer than cows without the lesions by 58 and 31 days, respectively. The means services per conception increased 1.0 time in cows with both lesions. Pregnancy rates of cows with WL and SU were 19.0% and 23.5%, while the rate of non-lame cows was 53.2%.
The proportion of pregnant cows was higher than non-pregnant cows in farms having low prevalence of lameness. On the contrary, the proportion of pregnant cows was lower than non-pregnant cows in high prevalence farms (Table 2). Cows in high prevalence farms were 3.2 times more likely to be non-pregnant, compared with cows in low prevalence farms (P = 0.001). When cows were categorized by lameness status,
proportion of pregnant cows was higher than non-pregnant cows in the non-lame group; while in the lame group, most cows were non-pregnant (Table 3). Cows classified as lame were 3.5 more likely to be non-pregnant, compared with non-lame cows (P = 0.0001). Attributable proportion analysis indicated that non-pregnancy in high lameness prevalence farms and in lame cows would be reduced by 43% and 70%, respectively, if lameness had been prevented.

Discussion

Poor reproductive performance in lame cows was found in small holder dairy farms regardless of the prevalence of lameness problem within the farm based on prolonged intervals from calving to calving and calving to first service, increased number of services per conception and decreased pregnancy rate. All findings support undesirable effects of lameness on reproduction reported by many researchers. Sprecher et al. (1997) reported that cows considered lame before the end of voluntary waiting period had impaired reproductive performance when compared to non-lame cows. A study conducted in German dairy herds reported harmful effects of lameness on reproductive performance of cows, including calving to first service interval, calving to conception interval and ability to conceive within the first month of lactation (Orgel et al., 2016). Whereas, Barkema, Westrik, van Keulen, Schukken, and Brand (1994) reported longer calving to first service interval and first service to conception interval in cows having lameness than cows without lameness. In Thailand, a study conducted in small holder farms in the northeast part revealed that calving to conception interval in subclinical laminitis cows was higher compared to non-laminitis
cows, which were 134.1 days and 119.8 days, respectively (Seesupa, Kanistanon, Pilachai, & Aiumlamai, 2016). Hernandez et al., (2001) found that lame cows with claw lesions were 0.52 times less likely to conceive compared to cows without claw lesion, which is obviously higher than 0.29 times less likely to conceive in lame cows found in our study. Our study found that cows affected with lameness had 73-88 days longer of calving to calving interval compared to that of non-lame cows, which is higher than results reported by a Pennsylvania study (Lee, Ferguson, & Galligan, 1989). These differences might be responsible by dissimilarities of management practices and other factors influencing reproductive performance among studies.

Several lesions of claws and limbs, such as heel-horn erosion, sole hemorrhage and sole ulcer, were found to be associated with poor reproductive indices (Sogstad et al., 2006). According to Charfeddine and Pérez-Cabal (2016), WL had distinct detrimental impact on reproductive performance of cows. Longer calving to calving and calving to first service intervals, higher service per conception and lower pregnancy rate in cows with WL than cows without WL were found in our study.

There have been many mechanisms explaining poor reproductive performance contributed by lameness. Garbarino, Hernandez, Shearer, Risco, and Thatcher (2004) found that lame cows had 3.5 times more likely to have delayed resumption of ovarian activity compared to non-lame cows during the early postpartum period. If lameness had not been occurred, more than 70% of impaired ovarian activity would be prevented. Some studies found normal follicular growth in lame cows; however, ovulation was less likely to occur in these cows compared to non-lame cows (Morris et al., 2009; Sood, Nanda, & Singh, 2009; Morris et al., 2011). Less obvious estrus behavior in lame cow compared to non-lame cows was also reported (Sood & Nanda, 2006; Morris et al.,
which might be due to reducing response to estradiol as a result of decreased priming of progesterone (Fabre-Nys & Martin, 1991). In addition, lame cows normally spent longer lying time than non-lame cows (Nechanitzky et al., 2016), thus estrus behavior may difficult to be detected in lame cows. Morris et al. (2011) reported that in lame cows which estrus behavior was detected, standing heat was found earlier in relation to ovulation time. Thus, too early insemination might partially be responsible for poor reproductive performance in lame cows as well.

Increased plasma cortisol resulting from pain and stress of claw lesions disrupts normal reproductive hormone releases (Dobson & Smith, 2000), which consequently affects the intensity of estrus behavior and oocyte production (von Borell, Dobson & Prunier, 2007). Negative energy balance due to reduced feed intake in lame cows might be another explanation for undesirable reproductive efficacy (Garbarino et al., 2004). In case of nutritional-related lameness, endotoxins might partly be responsible for impaired reproductive performance (Seesupa et al., 2016).

As described above, lameness is an important factor affecting reproductive performance by delaying ovarian activity as well as inhibiting estrous behavior from various processes. Results of the study reported here revealed that non-pregnancy in lame cows would be reduced by 70%, if lameness had been prevented.

Conclusions

Our study showed that lameness had detrimental effects on reproductive performance in dairy cows raised in small holder farms. Therefore, optimizing claw
health by appropriate preventive measures and early detection of claw and limb disorders are necessary to minimize reproductive consequences of lameness.

Acknowledgements

Financial assistance of this study was supported by Kasetsart University Development and Research Institute (KURDI) project 108-52. We thank all dairy farmers who participated in this study.

Ethical statement

This study was approved by Kasetsart University’s Institutional Animal Care and Use Committee (ACKU61-VET-055) for the use of animals in the study.

References

StataCorp. (2013). Stata Statistical Sofeware: Relaease 13.0 College Satation, TX: Stata Corporation.

Table 1. Reproductive indices of lame and non-lame cows in high and low lameness prevalence herds.

<table>
<thead>
<tr>
<th>Reproductive indices</th>
<th>High lameness prevalence herds</th>
<th>Low lameness prevalence herds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lame cows</td>
<td>Non-lame cows</td>
</tr>
<tr>
<td></td>
<td>513 ± 124<sup>A</sup></td>
<td>440 ± 101<sup>B</sup></td>
</tr>
<tr>
<td>Calving to calving interval (days)</td>
<td>529 ± 100<sup>A</sup></td>
<td>441 ± 84<sup>B</sup></td>
</tr>
<tr>
<td>Services per conception (times)</td>
<td>2.98 ± 2.4<sup>A</sup></td>
<td>2.06 ± 1.5<sup>B</sup></td>
</tr>
<tr>
<td>Calving to first service interval (days)</td>
<td>152 ± 122<sup>A</sup></td>
<td>97 ± 78<sup>B</sup></td>
</tr>
<tr>
<td>Pregnancy rate (%)</td>
<td>21<sup>A</sup></td>
<td>40.5<sup>B</sup></td>
</tr>
<tr>
<td></td>
<td>44<sup>c</sup></td>
<td>60<sup>d</sup></td>
</tr>
</tbody>
</table>

A,B The value with different superscript within the same row differ significantly (P < 0.001)

a,b The value with different superscript within the same row differ significantly (P < 0.05)

c,d The value with different superscript within the same row differ significantly (P < 0.10)
Table 2. Numbers of pregnant and non-pregnant cows in high and low lameness prevalence herds.

<table>
<thead>
<tr>
<th>Pregnant</th>
<th>Prevalence of lameness within herd</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (0)</td>
<td>High (1)</td>
</tr>
<tr>
<td>Non-pregnant (0)</td>
<td>135 (40.8%)</td>
<td>224 (68.7%)</td>
</tr>
<tr>
<td>Pregnant (1)</td>
<td>196 (59.2%)</td>
<td>102 (31.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>331 (100%)</td>
<td>326 (100%)</td>
</tr>
</tbody>
</table>

Table 3. Numbers of pregnant and non-pregnant in lame and non-lame cows

<table>
<thead>
<tr>
<th>Pregnant</th>
<th>Lameness</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-lame cows (0)</td>
<td>Lame cows (1)</td>
</tr>
<tr>
<td>Non-pregnant (0)</td>
<td>223 (46.7%)</td>
<td>136 (75.6%)</td>
</tr>
<tr>
<td>Pregnant (1)</td>
<td>254 (53.3%)</td>
<td>44 (24.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>477 (100%)</td>
<td>180 (100%)</td>
</tr>
</tbody>
</table>