Magnetohydrodynamic flow of dusty fluid over Riga plate with deforming isothermal surfaces with convective boundary condition

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Songklanakarin Journal of Science and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SJST-2017-0488.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>21-Nov-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Ramesh, G. K.; KLE'S J.T.College, Gadag, Mathematics</td>
</tr>
<tr>
<td></td>
<td>Prasanna Kumara, B. C.; Government First Grade College, Mathematics</td>
</tr>
<tr>
<td></td>
<td>Kumar, Shashi; Government First Grade College, Mathematics</td>
</tr>
<tr>
<td>Keyword:</td>
<td>dusty fluid, riga plate, convective boundary condition, thermal radiation, stretching sheet</td>
</tr>
</tbody>
</table>

For Proof Read only
Research Article

Magnetohydrodynamic flow of dusty fluid over Riga plate with deforming isothermal surfaces with convective boundary condition

B.C. Prasannakumara¹, N.S. Shashikumar¹ and G.K. Ramesh²*

¹Government First Grade College, Koppa, Chikkamagaluru-577126, Karnataka, INDIA.
²Department of Mathematics, KLE’S J.T.College, Gadag-582101, Karnataka, INDIA

*Corresponding author: email-id: gkrmaths@gmail.com (G.K.Ramesh) Ph: +91 9900981204
Magnetohydrodynamic flow of dusty fluid over Riga plate with deforming isothermal surfaces with convective boundary condition

Abstract: The present flow problem investigates the study of MHD viscous two-phase dusty flow and heat transfer over a permeable stretching isothermal Riga plate with embedded in a porous medium in the presence of convective boundary condition. The wall boundary is subjected to a linear deformation as well as to a quadratic surface temperature. The governing partial differential equations are transformed into ordinary differential equations using similarity variables, which are solved by numerically using fourth order Runge-Kutta method with shooting technique. The impact of various pertinent parameters for the velocity and temperature fields are profiles are analyzed through graphs in detail. Also, friction factor and Nusselt numbers are discussed and presented through tables. The output reveals that higher values of permeability, decelerates the velocity and accelerates the temperature profile of both phases and the noted that velocity phase is always larger than dust phase.

Keywords: Dusty fluid; Riga plate; convective boundary condition; stretching sheet; numerical solutions.

1. Introduction

In nature, the fluid fit as a fiddle is every now and then open. Water and air contains degradations like clean particles and remote bodies. As of late, pros have swung to focus dusty fluid. Examination of reason for control layer stream and warmth move in dusty fluid is to an unprecedented degree essential in understanding of various mechanical and depicting
issues stressed over trademark fallout, powder progress, rain crumbling in guided rockets, sedimentation, start, fluidization, nuclear reactor cooling, electrostatic precipitation of spotless, misuse water treatment, acoustics group settling, lunar super hot remains streams vaporized and paint sprinkling, and so forth. In the current decades, pros have been focusing on separating the sparkle and mass trade characteristics of dusty through different channels. Fundamental studies in dynamics of dusty fluid, its behavior and boundary layer modeling have been initiated by (Saffman, 1962)). Based on above applications (Chakrabarti, 1974) analyzed the boundary layer flow of a dusty gas. (Datta, & Mishra, 1982) have investigated boundary layer flow of a dusty fluid over a semi-infinite flat plate. (Vajravelu, & Nayfeh, 1992) investigated hydromagnetic flow of a dusty fluid over a porous stretching sheet. (Gireesha, Ramesh, Abel, & Bagewadi, 2011) described the boundary layer flow and heat transfer analysis of dusty fluid past a stretching sheet in the presence of non-uniform heat source/sink. The effect of temperature dependent thermal conductivity and viscosity on unsteady MHD Couette flow and heat transfer of viscous dusty fluid between two parallel plates has been investigated by (Mosayebidorcheh, Hatami, Ganji, Mosayebidorcheh, & Mirmohammadsadeghi, 2015). (Prakash, Makinde, Kumar, & Dwivedi, 2015) examine the combined effects of thermal radiation, buoyancy force and magnetic field on heat transfer to MHD oscillatory dusty fluid flow through a vertical channel filled with a porous medium. (Ahmed, Khan, & Mohyud-Din, 2017b), analyzed the impact of nonlinear thermal radiation on the viscous flow through porous channel. The steady two dimensional, incompressible, laminar boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet is investigated by (Ramesh, & Gireesha, 2013) using similarity solution approach. (Turkyilmazoglu, 2017) disused the magnetohydrodynamic flow of a viscous two-phase dusty fluid and heat transfer over permeable (Gireesha, Venkatesh, Shashikumar, & Prasannakumara, 2017) implemented (Saffman, 1962) model to investigate the effect of thermal stratification on MHD flow and heat transfer of dusty fluid over a vertical stretching sheet embedded in a thermally stratified porous medium in the presence of uniform heat source and thermal radiation. (Bhatti, & Zeeshan, 2017) examined the peristaltic motion of a fluid particle suspension with the effect of slip. Recently, (Ramesh, Chamkha, & Gireesha, 2016; Hamid, Nazar, & Pop, 2017; Ramesh, Gireesha, & Gorla, 2015a; 2015b) numerically studied the boundary layer flow of dusty fluid through different geometries.
The flow-control device of Gailitis and Lielausis is an electromagnetic actuator which consists of a spanwise aligned array of alternating electrodes and permanent magnets, mounted on a plane surface as seen in Fig. 1. This set-up, sometimes is called to as Riga-plate can be applied to reduce the friction and pressure drag of submarines by preventing boundary-layer separation as well as by diminishing turbulence production. Initially, (Gailitis, & Lielausis, 1961) introduce a flow control device called Riga plate. (Ahmad, Asghar, & Afzal, 2016) examined the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. (Hayat, Abbas, Ayub, Farooq, & Alsaedi, 2016) presented a computational modeling to analyze the effect of heat generation/absorption on the boundary layer flow of a nanofluid induced by a variable thickened Riga plate with convective boundary condition. The boundary layer flows of electro magneto hydrodynamic on nanofluid over a Riga plate with slip effect have been analyzed by (Ayub, Abbas, & Bhatti, 2016). The simultaneous effects of thermal radiation and EMHD on viscous nanofluid through a horizontal Riga plate have been analyzed by (Bhatti, Abbas, & Rashidi, 2016). Entropy generation on viscous nanofluid with mixed convection boundary layer flow induced by a horizontal Riga plate has been examined by (Abbas, Ayub, Bhatti, Rashidi, & El-Sayed, Ali, 2016). (Farooq, Anjum, Hayat, & Alsaedi, 2016) discussed the phenomenon of melting heat transfer in boundary layer stagnation point flow of viscous fluid towards a Riga plate of variable thickness. A substantial number of experimental and theoretical studies have been carried out by numerous researchers on Riga plate (Iqbal, Mehmood, Azhar, & Maraj, 2017; Ahmed, Khan, & Mohyud-Din, 2017a; Ramesh & Gireesha, 2017a; Ramesh, Roopa, Gireesha, Shehzad, & Abbasi, 2017b; Abbas, Hayat, Ayub, Bhatti, & Alsaedi, 2017a; Abbas, Bhatti, & Ayub, 2017b). Recently, in the presence of a strong magnetic field, (Hayat, Khan, Imtiaz,
& Alsaedi, 2017) explored the structure of convective heat transfer of electro magneto hydrodynamic squeezed flow past a Riga plate.

Principle inspiration of the issue is to examine about the limit layer flow of two-stage dusty fluid show over a Riga-plate through a peaceful incompressible thick electrically leading dusty liquid implanted in a permeable medium. Convective point of confinement condition is for the most part used to describe a direct convective heat exchange condition for no less than one scientific component in heat. The representing conditions are changed into non-straight standard differential condition by utilizing similitude change and afterward fathomed numerically utilizing Runge-Kutta-Fehlberg-45 arrange strategy with shooting procedure. The practices of each of the non-dimensional amounts are uncovered graphically for all the liquid parameters. Additionally, contact factor and Nusselt numbers are talked about and displayed through charts.

2. Formulation:

Consider a steady two dimensional motion of laminar boundary layer flow of an incompressible viscous electrically conducting dusty fluid over a permeable stretching isothermal Riga plate with variable thickness is embedded in a porous medium as seen in Fig. 1 and Fig. 2. The stretching coincides with the planey = 0. It is assumed that the velocity of the sheet is linear, that is \(u_w(x) = cx \), with \(c > 0 \) for a stretching sheet. It is also assumed that the local temperature of the sheet is \(T_w \), while that of the ambient fluid and dust particles is \(T_\infty \). The porous medium is assumed to be transparent and is in thermal equilibrium with the fluid. The particles are taken to be small enough and of sufficient number and are treated as a continuum which allow concepts such as density and velocity to have physical meaning. A uniform magnetic field \(B_0 \) is applied in the transverse direction \(y > 0 \) normal to the plate. The dust particles are assumed to be spherical in shape, uniform in size possessing constant number density.
Under these assumptions, along with the usual boundary layer approximations, the governing equations for the flow are,

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} + \frac{KN}{\rho} (u_p - u) - \frac{v}{k_p} (u_p - u) + \frac{\eta v M_0}{\beta_p} \exp \left(-\frac{\pi}{\alpha} y \right), \quad (2)
\]

\[
\frac{\partial u_p}{\partial x} + \frac{\partial v_p}{\partial y} = 0, \quad (3)
\]

\[
u c_p \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} + \frac{\rho c_m}{\tau_f} (T_p - T) + \frac{\rho_p}{\tau_v} (u_p - u)^2 - \frac{\partial q_r}{\partial y}, \quad (5)
\]

\[
\rho c_m \left(\frac{\partial T_p}{\partial x} + \frac{\partial T_p}{\partial y} \right) = \frac{\rho_p c_m}{\tau_f} (T_p - T). \quad \text{(6)}
\]

with the boundary conditions

\[
u = U_w(x) = cx, v = 0, -k \frac{\partial T}{\partial y} = h_f (T_w - T) \text{ at } y = 0,
\]

\[
u \to 0, u_p \to 0, v_p \to v, T \to T_\infty, T_p \to T_\infty \text{ as } y \to \infty, \quad \text{(7)}
\]

where \((u,v)\) and \((u_p, v_p)\) are the velocity components of the fluid and dust particle phases along \(x\) and \(y\) directions respectively. \(v, K, N, \rho\) are the kinematic viscosity of the fluid, Stokes resistance or drag coefficient, number of dust particle per unit volume, density of the fluid respectively. \(k_p\) is the permeability of the porous medium, \(j_0\) is the applied current density in the electrodes, \(M_0\) is the magnetization of the permanent magnets mounted on the surface of the Riga plate, \(\alpha\) denotes the width of the magnets between the electrodes, \(m\) is the mass of the dust particle. \(T\) and \(T_p\) is the temperature of the fluid and temperature of the dust particle respectively, \(c_p\) and \(c_m\) are the specific heat of fluid and dust particles, \(\tau_f\) is the thermal equilibrium time i.e., the time required by the dust
cloud to adjust its temperature to the fluid, \(\tau_v \) is the relaxation time of the of dust particle i.e., the time required by a dust particle to adjust its velocity relative to the fluid. Further, \(b \) is a constant with \(b > 0 \) for a heated plate \((T_w > T_\infty)\) and \(b < 0 \) for a cooled surface \((T_w < T_\infty)\), respectively.

It should be noted that the rest of the momentum equations regarding the fluid and dust particles, which are not cited in “Eq. (1)”, can be made use of evaluating the pressures acting upon the fluid and dust, which is a trivial task, so omitted here.

Using the Rosseland approximation for radiation, radiation heat flux is given

\[
q_r = -\frac{4\sigma^* T^4}{3k^*} \frac{\partial T}{\partial y} = -\frac{16\sigma^* T_\infty^3}{3k^*} \frac{\partial T}{\partial y},
\]

where \(\sigma^* \) is the Stefan–Boltzmann constant and \(k^* \) is the mean absorption coefficient. Assuming that the temperature differences within the flow such that the term \(T^4 \) may be expressed as a linear function of the temperature, and expand \(T^4 \) in a Taylor series about \(T_\infty \) and neglecting the higher order terms beyond the first degree in \((T - T_\infty)\), then we get

\[
T^4 \approx 4T_\infty^3 T - 3T_\infty^4.
\]

Here energy equation takes the form as follows

\[
\rho c_p \left(\frac{\partial T}{\partial x} + \frac{v}{y} \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left[k + \frac{16\sigma^* T_\infty^3}{3k^*} \frac{\partial T}{\partial y} \right] + \frac{\rho \mu_p}{T} (u_p - T) + \frac{\rho_p}{\tau_p} (u_p - u)^2.
\]

The mathematical analysis of the current physical problem is simplified by introducing the subsequent similarity transformations based on the dimensionless boundary layer co-ordinate \(\eta \),

\[
\begin{align*}
 u &= cxf(\eta), \quad v = -\sqrt{cv} f(\eta), \quad \eta = \frac{c}{\sqrt{v}} y, \quad u_p = cxF(\eta), \\
 v_p &= -\sqrt{cvF(\eta)}, \quad \theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \quad \theta_p(\eta) = \frac{T_p - T_\infty}{T_w - T_\infty}, \quad T_w - T_\infty > 0
\end{align*}
\]
where \(T_w \) and \(T_\infty \) denote the temperature at the wall and at large distance from the wall, respectively. The governing equations of motion for the two-phase fluid flow and heat transfer “Eq. (2), “Eq.(4), “Eq.(6) and “Eq.(9)” are then reduced to

\[
\begin{align*}
\ddot{f} + f \frac{d^2 f}{dx^2} - (f')^2 + l \beta \left[F' - f' \right] - S f' + Q \exp(-A \eta) &= 0, \\
F'^2 - F \frac{dF}{dx} + \beta \left[F' - f' \right] &= 0, \\
\left(1 + \frac{4Rd}{3} \right) \frac{d}{dx} + Pr \left[f \frac{d^2 \theta}{dx^2} - 2 f' \frac{d \theta}{dx} \right] + Pr \gamma \beta T (\theta_p - \theta) + l \beta Pr Ec \left(F' - f' \right)^2 &= 0, \\
2 F' \theta_p - F \theta_p' + \beta T (\theta_p - \theta) &= 0,
\end{align*}
\]

(11) (12) (13) (14)

The corresponding boundary conditions will take the following form,

\[
\begin{align*}
f(\eta) &= 0, f'(\eta) = 1, \frac{d}{d\eta} (\eta) = -B_i(1 - \theta(\eta)) \text{ at } \eta = 0, \\
{d}{f'}(\eta) \rightarrow 0, F' (\eta) \rightarrow 0, F(\eta) \rightarrow f(\eta), \theta(\eta) \rightarrow 0, \theta_p(\eta) \rightarrow 0 \text{ as } \eta \rightarrow \infty
\end{align*}
\]

(15)

where \(l = \frac{\rho_p}{\rho} \) is the mass concentration of dust particles (or particle loading parameter) with \(\rho_p = Nm \), standing for the density of the particle phase, \(\beta = \frac{1}{c\tau_T} \) is the fluid particle interaction parameter for velocity, \(S = \frac{v}{k_{pc}} \) is the permeability parameter, \(Rd = \frac{16 \sigma^* T_\infty^3}{3k c \nu} \) is the radiation parameter, \(Q = \frac{\pi j M_0}{\theta pc^2 x} \) is the modified Hartman number, \(A = \frac{\pi a}{c/v} \) is the dimensionless parameter, \(Pr = \frac{vpc_p}{k} \) is the Prandtl number, \(\gamma = \frac{c_m}{c_p} \) is the specific heat parameter, \(\beta_T = \frac{1}{c\tau_T} \) is the fluid-interaction parameter for temperature, \(Ec = \frac{u_w}{(T_w - T_\infty)c_p} \) is the Eckert number and \(B_i = \frac{\rho h_f}{\sqrt{\nu c k}} \) is the Biot number.

The physical quantities of interest are the skin friction coefficient \(C_f \) and the local Nusselt Number \(Nu \) which are defined as

\[
C_f = \frac{\tau_w}{\rho U_w^2}, \quad Nu = \frac{x q_w}{k(T_w - T_\infty)}
\]

(16)

where the surface shear stress \(\tau_w \) and the surface heat flux \(q_w \) are given by
\[\tau_w = -\mu \left(\frac{\partial u}{\partial y} \right)_{y=0}, \quad q_w = -k \left(\frac{\partial T}{\partial y} \right)_{y=0} + (q_r)_w. \]

(17)

Using the non-dimensional variables, we obtain

\[C_{f_x} Re_x^{\frac{1}{2}} = -f''(0), \quad Nu Re_x^{\frac{1}{2}} = -\left(1 + \frac{4 R_d}{3} \right) \theta(0). \]

(18)

Table 1: Validation results for the local Nusselt Number \(-\theta'(0)\), in the case of \(\beta, S, Q, A, \beta_T, Ec\) and \(Bi\).

3. **Numerical procedure**

Equations (11)–(14) are highly non-linear ordinary differential equations. To solve these equations we adopted Runge-Kutta Fehlberg fourth–fifth order method (RKF45 Method) along with shooting method. With the help of shooting technique, missed initial conditions are obtained by converting boundary value problem into an initial value problem. We have considered infinity condition at a large but finite value of \(\eta\) where negligible variation in velocity and temperature profiles occurs. For the present problem, we took step size \(\Delta \eta = 0.001, \eta_\infty = 5\) and accuracy to the fifth decimal place. The CPU running-time for existing numerical solution is 0.03 sec. Table 1 presents the validation of present problem is made with (Grubka, & Bobba, 1985) and (Chen, 1998). It demonstrates an excellent comparison and gives confident that present numerical technique is accurate.

Figure 3. Effect of permeability parameter \(kp\) on velocity profile

Figure 4. Effect of permeability parameter \(kp\) on temperature profile

4. **Result and Discussion**
Numerical computation has been carried out in order to study the influence of different parameters that describes the flow and heat transfer characteristics of dusty fluid. The results are presented and discussed in detail through graphs. In all Figures, the values of the fixed parameters are $k_p = 2.0, Ec = 0.1, Pr = 3.0, Q = 0.1, A = 0.6, Rd = 1.5, \beta = \beta_T = 0.5, l = 1.0, B_i = 0.5$.

Figure 5. Effect of fluid particle interaction parameter for velocity β on velocity profile

Figure 6. Effect of fluid particle interaction parameter for temperature β_T on temperature profile

Figs. 3 and 4 depicts the effect of permeability parameter k_p on the velocity and temperature distributions. It is obvious that the presence of porous medium causes higher restriction to the fluid flow which causes the fluid to decelerate. Therefore, with an increase in impermeability parameter causes the resistance to the fluid motion and hence velocity decreases of both the phases. The effect of increasing values of permeable parameter contributes to the thickening of thermal boundary layer, which is shown in Fig. 4. This is evident from the fact that, the porous medium opposes the fluid motion. The resistance offered to the flow is responsible in enhancing the temperature. Fig. 5 shows the behavior of fluid particle interaction parameter of velocity (β) on the velocity distribution. From these figures we observed that, the fluid phase velocity decreases and the dust phase velocity increases for increasing the values of β as shown in Fig. 5. It is observed that an increase in fluid-particle interaction parameter, the thickness of momentum boundary layer decreases for fluid phase and this phenomena is opposite for the dust phase. The effect of fluid particle interaction parameter of temperature β_T on fluid and dust phase temperature profiles are shown in Fig. 6. It can be seen that fluid phase temperature decreases and dust phase temperature increases with increase in β_T.

Figure 7. Effect of modified Hartman number (Q) on velocity profile
Figs. 7 and 8 explain the effect of modified Hartman number Q on velocity and temperature profile on both directions for fluid and dust phase. We noticed that, the velocity profile increases and temperature profile decreases for increasing the values of Q. Further momentum boundary layer thickness also enhances. Physically, it is interpreted that higher values of modified Hartman number outcomes in the development of external electric field which consequently increases the velocity field. Impact of dimensionless parameter A on velocity distribution is illustrated in Fig. 9. It is analyzed that the velocity profile and associated boundary layer thickness decrease for higher values of A. Fig.10 emblematizes the effects of the Eckert number (Ec) for temperature distribution. From this figure it is observed that the increasing values of Eckert number is to increase temperature distribution. Because of the fact that heat energy is stored in the liquid due to frictional heating and this is true in both the cases.

Figure 9. Effect of dimensionless parameter (A) on velocity profile

Figure 10. Effect of Eckert number (Ec) on temperature profile

Fig. 11 illustrates the effects of the radiation parameter (Rd) on the fluid phase and dust phase temperature, and from the graph it seen that as radiation parameter increases both the phases of temperature profile increases. This is due to the fact that an increase in radiation parameter provides more heat to the fluid that causes an enhancement in the temperature and thermal boundary layer thickness. Fig. 12 is sketched the temperature distributions against the Prandtl number (Pr). The decrease in thermal diffusivity is a dominant factor in Pr. This can be attributed due to diffusivity of liquid is appeared in Prandtl number that becomes weaker for higher. From this figure, it reveals that the temperature profile decreases for both the phases with increase in the
value of Pr. Hence Prandtl number can be used to increase the rate of cooling. It is noted from all the graphs that the fluid phase is parallel to that of dust phase and also the fluid phase is higher than the dust phase. Figure 13 dissemble the change in temperature profile for different values of Biot number (Bi). Here we can see that the increasing values of Biot number lead to elevated temperature and thicker thermal boundary layer thickness. **This is due to the fact that the convective heat exchange at the surface leads to enhance the thermal boundary layer thickness.**

Figure 11. Effect of radiation parameter (Rd) on temperature profile

Figure 12. Effect of Prandtl number (Pr) on temperature profile

We have numerically studied the effects of kp, Ec, Pr, Q, A, Rd, β, β_T, l, Bi on skin friction coefficient and the local Nusselt number, which represents the heat transfer rate at the surface and are recorded in the Table 2. From this table it is clear that magnitude of skin friction coefficient increases with increase in A, kp, β, l and decreases with increase in Q. Further it is observed that, increase in the values of Pr, Q, β_T, l increase the magnitude of local nusslet number and also increase in the values of A, Ec, kp Rd decreases the magnitude of local nusslet number. The local nusslet number increases with Pr, and in consequence increases the heat transfer rate at the surface. This is due to the fact that the higher Prandtl number reduces the thermal boundary layer thickness and increases the surface heat transfer rate. Also, high Prandtl number implies more viscous fluid which tends to retard the motion.

Figure 13. Effect of Biot number (Bi) on temperature profile

Table 2. Values of skin friction coefficient and Nusselt number

5. **Conclusions**

This paper investigates the MHD flow of a two-phase quiescent incompressible viscous electrically conducting dusty fluid over a Riga plate with permeable stretching body is embedded
in a porous medium with convective boundary condition. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The effects of various parameters on the flow and heat transfer are observed from the graphs, and are summarized as follows:

- Fluid phase velocity is always greater than that of the particle phase. And also fluid phase temperature is higher than the dust phase temperature.
- The effect of transverse modified Hartman number is to suppress the temperature field, which in turn causes the enhancement of the velocity field.
- Velocity of fluid and dust phases decrease while the temperature of fluid and dust phases increase as permeability parameter increases.
- Temperature profile increases for Eckert number, radiation parameter, temperature ratio parameter, Biot number and decreases for Prandtl number and mass concentration particle parameter.
- Increase of \(\beta \) will decrease fluid phase velocity and increases dust phase velocity.
- Increase of \(\beta_T \) will decrease fluid phase and increases dust phase of temperature profile.

Acknowledgement: The author is very much thankful to the editor and referee for their encouraging comments and constructive suggestions to improve the presentation of this manuscript. We wishes to express our thanks to University Grants Commission, New Delhi, INDIA for financial support to pursue this work under a Major research project Scheme. [F.No-43-419/2014(SR)].

References:

For Proof Read only

Figure 3

Figure 4

kp = 1.5, 2.0, 2.5, 3.0
Figure 5

\[F(\eta) \text{-Dust phase} \]
\[f'(\eta) \text{-Fluid phase} \]

\[\beta = 0.5, 1.5, 2.5, 3.5 \]
Figure 6

\[\theta(\eta), \theta_p(\eta) \]

\[\beta_f = 0.5, 1.5, 2.5, 3.5 \]

Figure 7

\[f(\eta), f'(\eta) \]

\[Q = 0.1, 0.4, 0.8, 1.2 \]
Figure 8

- \(\theta_\phi (\eta) \): Dust Phase
- \(\theta(\eta) \): Fluid Phase

\[Q = 0.1, 0.4, 0.8, 1.2 \]

Figure 9

- \(F'(\eta) \): Dust phase
- \(f'(\eta) \): Fluid phase

\[A = 0.2, 1.0, 1.8, 2.6 \]
Figure 12

Figure 13

Pr = 2.0, 3.0, 4.0, 5.0

Bi = 0.0, 0.5, 1.0, 1.5
<table>
<thead>
<tr>
<th>A</th>
<th>Bi</th>
<th>Ec</th>
<th>kp</th>
<th>Pr</th>
<th>Q</th>
<th>Rd</th>
<th>β</th>
<th>β_r</th>
<th>l</th>
<th>$-f''(0)$</th>
<th>$-\theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.771644</td>
<td>0.377063</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.789484</td>
<td>0.376044</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.798164</td>
<td>0.375704</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.0</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.605168</td>
</tr>
<tr>
<td>0.6</td>
<td>1.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.758917</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.392172</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.361825</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.353727</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>1.5</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.63702</td>
<td>0.378488</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.5</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.917005</td>
<td>0.374419</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>3.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>2.042809</td>
<td>0.372525</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>4.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.403032</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>6.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.411077</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.4</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.653821</td>
<td>0.379178</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.8</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.484757</td>
<td>0.382045</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.2</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.318002</td>
<td>0.384326</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.384525</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.374295</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.378363</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.384326</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.382045</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.376044</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.37967</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.382884</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.385052</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.735576</td>
<td>0.374295</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.828128</td>
<td>0.378363</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.384326</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.782444</td>
<td>0.382045</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Pr</th>
<th>Grubka and Bobba (1985)</th>
<th>Chen (1998)</th>
<th>Present Study $\theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>1.0885</td>
<td>1.0885</td>
<td>1.0885</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3333</td>
<td>1.3333</td>
<td>1.3333</td>
</tr>
<tr>
<td>10.0</td>
<td>4.7969</td>
<td>4.7969</td>
<td>4.7969</td>
</tr>
</tbody>
</table>

Table I