The effect of functional balance training on the balancing abilities of those who wear high-heeled shoes

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Songklanakarin Journal of Science and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SJST-2018-0145.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Jun-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors:| Somthavil, Sompiya; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Boonyarom, Onuma; Kasetsart University; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Srisupornkornkool, Kanokwan; Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand  
Toiem, Kalyakorn; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Phonsrithi, Chuthamat; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Boonchuy, Nitchakul; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Nacharoen, Phengporn; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand  
Tantarawongsa, Patorn; Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand |
| Keyword:                 | functional balance training, balancing ability, high-heeled shoes |
Original Article

The effect of functional balance training on the balancing abilities of those who wear high-heeled shoes

Somthavil Sompiya1*, Boonyarom Onuma1, Srisupornkornkool Kanokwan2, Toiem Kalyakorn1, Phonsrithi Chuthamat1, Boonchuay Nitchakul1, Nacharoen Phenporn1, and Tantarawongsa Patorn1

1Department of Sports Science and Health, Faculty of Sports Science, Kasetsart University, Nakorn Pathom, 73140, Thailand

2Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand

* Corresponding author, Email address: fsssys@ku.ac.th, Tel: +66 81 5962234, Fax: +66 34 355258

Abstract

Wearing high-heeled shoes results in increases the chances of falling, it is important for people who wear high heels to do functional balance training. The aim of this study is to examine the effect of functional balance training on the balancing abilities. Nineteen participants were divided into a Control Group (CG) and a Functional Balance Training Group (FBTG). The modified Star Excursion Balance Test (mSEBT), applied with high-heeled shoes, was used to study the effects of dynamic postural control, and a provocation test was used to study postural stability. The overall dynamic postural control of those in the FBTG group was significantly (P<0.05) better for both legs than it was among the participants in the CG group, and postural stability was significantly (P<0.05) reduced in the sway paths. In conclusion, functional balance
training leads to improved balancing abilities that may help to prevent the occurrence of slipping and ankle sprains.

**Keywords:** functional balance training, balancing ability, high-heeled shoes

1. Introduction

High-heeled shoes are shoes with heels that are higher than the forefeet; in general, the toe areas are narrow, the heels are hard, and the curvature is on the soles of the feet, which affects foot movement. However, high heels are still among the favorite footwear choices (Bae, Ko, Park, & Lee, 2015) for women because of the demands of fashion and, in some professions, for elegance. Wearing high heels for extended periods of time can result in discomfort and muscular fatigue (Cronin, Barrett, & Carty, 1985), back pain from overuse of certain muscle functions, and increased lumbar lordosis (Dai et al., 2015; Mika, Oleksy, Mika, Marchewka, & Clark, 2012). The altered pressure on the knees that is caused by walking in high heels may predispose people to degenerative changes in their joints (Kerrigan, Todd, & Riley, 1998). In addition, wearing high-heeled shoes can lead to hallux valgus, musculoskeletal pain (Barnish & Barnish, 2016), and leg injuries at the ankles (39%) and feet (33%) (Barnish & Barnish, 2016; Moore, Lambert, Jenkins, & McGwin, 2015; Tedeschi, Dezzotti, Joviliano, Moriya, & Piccinato, 2012), and especially to ankle sprain that causes tearing of the ankle ligaments (Moore et al., 2015).

High-heeled shoes also cause damage to the circulatory system by reducing the blood flow to the muscles, and as a result the veins of the legs are stimulated, which leads to risk factors for varicose veins (Tedeschi et al., 2012). Furthermore, wearing high heels increases the chances of slipping and falling because the changes that are felt
around the ankles affect balance (Blanchette, Brault, & Powers, 2011). Wearing shoes with heels that are higher than 5.08 cm (Ebbeling, Hamill, & Crussemeyer, 1994) often leads to fatigue because it is difficult for both feet to balance the weight, and results in a loss of dynamic balance, which can cause falls and ankle sprains.

It is important for those who wear regular high-heeled shoes to work out or receive training to reduce injuries (Kim et al., 2015). Previous studies have been conducted on the use of ankle exercises (Ebbeling et al., 1994; Kim et al., 2015) and balance exercises to help in preventing damage to the ankle joints by improving balancing abilities (Lee, Han, & Lee, 2016). Balance training should also relate to the activities in people’s daily lives. Injuries most frequently occur at home (49.5%), on public property (33.1%), and on a street or highway (10.3%) (Moore et al., 2015). Training should therefore focus on the specific activities people do in their daily lives. Michell, Ross, Blackburn, Hirth and Guskiewicz (2006) found that dynamic postural stability can be improved more by practicing functional balance training than through general coordination exercises (Michell et al., 2006). Also, Azeem and Zutshi (2017) found that functional balance training improved dynamic postural control and that postural control is the key to ankle rehabilitation (Azeem & Zutshi, 2017), since developing control over posture helps the ankle to become more stable (Riemann, 2002; Rozzi, Lephant, Sterner, & Kuligowski, 1999). Clearly, a functional balance training program can be applied to many groups, not only to athletes and patients, and should be used for those who wear high-heeled shoes, which requires good balancing abilities to prevent falls and ankle sprains.

Researchers are, then, interested in introducing functional balance training to those who wear high heels on a daily basis. It is expected that functional balance
training will improve dynamic postural control and therefore help to prevent slipping and ankle flipping in people who wear high heels.

2. Materials and Methods

2.1 Subjects

The study involved 22 female student participants from the Kamphaeng Saen Campus, at Kasetsart University. The sample size was determined based on a previous study (Benis, Bonato, & La Torre, 2016), the means and SDs for the parameters from this study. The calculation by available online G*Power Program, Version 3.1.9, with $\alpha = 0.05$ and 95% power. The participants had habitually worn high heels measuring a minimum of 5 cm for not less than 20 hours a week for at least one year. None of the body mass indexes of the participants exceeded 24.9 kg/m$^2$. In addition, none of the participants had experienced pain or injury or had had lower extremity surgery within the previous six months, and they had no communication or cognitive impairments and no histories of neurological disorders or vertigo or problems with vision and balance. The participants were divided into two groups: the Control Group (CG, n = 11) and the Functional Balance Training Group (FBTG, n = 11). The participants were then divided based on ranking and lottery method by composite reach distances score. All participants signed an informed consent form to participate in this study. Participants were excluded if they did not follow the researcher's advice, had any injuries, or were pregnant during the time of the program. During the experimental session one of them in the Functional Balance Training Group (FBTG) dropout from accident and two participants in the Control Group (CG) inform of a withdrawal from the study.
2.2 Methods

The leg lengths of all participants were measured from the anterior superior iliac spine (ASIS) to the medical malleolus, after which they stretched their leg muscles before undertaking the following test.

2.2.1 Dynamic postural control through the modified Star Excursion Balance Test (mSEBT)

All participants were tested with the mSEBT by standing with high-heeled shoes and reaching leg tap distals of the toe box in three directions (Clagg, Paterno, Hewett, & Schmitt, 2015). They also listened to a demonstration of the test method given by a researcher. The test began with the participant standing on one leg (the measurement leg), making sure that the distal of the shoe tip was at the center of the grid (Figure 1), and placing both hands on the waist. The participant then reached, or extended, the foot that was not standing so that it was as far away as possible in the anterior (ANT), posteromedial (PM), and posterolateral (PL) directions (Hertel, 2008; Plisky, Rauh, Kaminski, & Underwood, 2006). The participant practiced this four times in each direction, and the researcher recorded the distances in centimeters for the three trials, allowing the participant to rest for 10 seconds after each trial, then to rest for 20 seconds after the subsequent trials (Filipa, Byrnes, Paterno, Myer, & Hewett, 2010). The tests ended when any of the following occurred: the participants lost their balance, they did not keep their hands on their waists, the heels of the standing leg did not continuously touch the floor, the reach foot did not touch the floor during the reach, they took their weight off the reach foot on the floor, and the reach leg did not return to the starting position before the next trial.
2.2.2 Postural stability assessed by the provocation test

Postural stability was assessed by using dynamic posturography (Kaut, Brenig, Marek, Allert, & Wüllner, 2016), which was performed using an experimentally standardized balance perturbation method that measured the path of medial-lateral and anteroposterior sway using an ultrasound-based measuring system with a movable and adjustable plate (PosturoMed® device) (Haider-Bioswing, Weiden, Germany). The motions of a plate with markers were obtained by the measurement unit Zebris CMS10 (CMS10, zebris Medical GmbH, Isny im Allgäu, Germany) (Figure 2). The short name for this test is the provocation test (Boeer, Mueller, Krauss, Haupt, & Horstmann, 2010; Kiss, 2011). The results of the provocation test were analyzed using Zebris WinPosture software (Holnapy & Kiss, 2013).

Briefly, the measurement unit, an ultrasound-based measuring head, was located 30 degrees to one side of the participant (Figure 2), and the movement of the plate was measured by two ultrasound-based sensors (Ultrasonic marker-big M1311) attached to the side of the plate. The plate was moved to the right relative to the medium position in the mediolateral direction and then locked in this position by the provocation unit. When the participant stood with high-heeled shoes in a double-leg stance in the middle of the platform, the stance width of the feet was standardized by the width of each participant’s shoulder. The plate lock was suddenly released without warning, and the plate then swung back to its resting position. Participants were asked to counter the body’s center of balance with compensatory equilibrium reactions and were instructed to look straight ahead and to balance with arm motions, without holding onto anything. The movement of the plate was measured until it came to rest, and the results were...
documented as the sum of all sways 5 seconds after release. Five measurements were taken, and participants rested for 60 seconds intervals between measurements. Trials were rejected when a participant touched the guardrail. The value for measuring was expressed as the average of two successfully completed trials, which was required for measuring. Higher values correspond to greater sway, which is an indicator of the worst clinical performance and impaired postural stability.

**Figure 2**

In each test, the non-participants performed a test of intratester reliability with the intraclass correlation coefficient (ICC). The test results showed the reliability of the repeat measurement within the test, with the dynamic postural control (mSEBT) test having an ICC value of 0.99 and the postural stability assessed by the provocation test having an ICC value of 0.99. To measure all variables from this study are blinded investigators but non-blinded study design for participants.

During the experimental session the Control Group (CG) were recommended to do ordinary their level of independence in daily life activities but prohibit to workout extra training.

**2.2.3 Functional balance training program**

Participants from the Functional Balance Training Group (FBTG) were trained through a functional balance training program three times a week for four weeks (Michell *et al.*, 2006; Azeem & Zutshi, 2017) (Table 1). The Functional Balance Training Group (FBTG) trained on group by qualified physical therapists had experience more than 15 years at the laboratory setting.

**Table 1**

**2.3 Data analysis**
The composite reach distance was calculated by taking the sum of the three reach distances (anterior, posteromedial, and posterolateral), and then divided by three times the limb length, and multiplied by 100. The quantitative data including the age, height, body mass indexes, composite reach distances of the left and right composite reach distances, and the sway paths from the provocation test presented the means and standard deviations (Mean ± SD).

Data was analyzed using means and standard deviations calculated for the study demographic data, results of dynamic postural control by the mSEBT, and postural stability assessed by the provocation test. The Shapiro-Wilk test was used to test for normal distribution. The Mann Whitney U test was used to compare the data for weight and body mass indexes between the two groups. The distributions for the left and right composite reach distances were found to be normal, so the Independent t-test was used to compare the data from the two groups. Postural stability was assessed by the provocation test using the Independent t-test for comparison of the data between the two groups. After four weeks, the Independent t-test was used to compare the data from the two groups both dynamic postural control by the mSEBT, and postural stability assessed by the provocation test. The statistical significance level was calculated at P<0.05 for all statistical analyses.

3. Results and Discussion

The ages of the participants were from 20 to 22 years (Mean ± SD, CG 21.36 ± 0.67, and FBTG 21 ± 0.77 years). The height was from 149.5 to 165.0 cm (Mean ± SD, CG 160.59 ± 5.13, and FBTG 159 ± 4.04 cm). The weight was from 41.0 to 63.3 kg (Mean ± SD, CG 50.84 ± 4.61, and FBTG 51.21 ± 7.33 kg). The body mass indexes
ranged from 15.4 to 24.72 kg/m$^2$ (Mean ± SD, CG 19.69 ± 1.86, and FBTG 20.18 ± 3.15 kg/m$^2$), as shown in Table 2.

### Table 2

#### 3.1 Comparison of dynamic postural control results using modified Star Excursion Balance Test (mSEBT)

A comparison of measurements for the dynamic postural controls between the CG and the FBTG before the program showed that the composite reach distance of both legs was not significantly different (P>0.05), with the CG left and right composite reach distances being 71.15 ± 10.21 and 72.49 ± 11.69%, respectively, and the FBTG left and right composite reach distances being 76.12 ± 6.64 and 76.05 ± 6.83%, respectively, as shown in Table 3.

### Table 3

A comparison of measurements for the dynamic postural controls between the CG and the FBTG after four weeks showed that the composite reach distances of both legs were significantly different (P<0.05), with the left composite reach distances of the CG and FBTG being equal to 71.32 ± 11.07 and 90.35 ± 7.94%, respectively, and the right composite reach distances of the CG and FBTG being equal to 71.22 ± 11.07 and 89.39 ± 8.37%, respectively, as shown in Table 4 and Figure 3.

### Table 4

#### 3.2 Comparing postural stability assessed by the provocation test

Postural stability was documented as the sum of all sways within 5 seconds of releasing the lever for the provocation test at baseline, and comparisons between the CG and FBTG found that means and standard deviations were 237.57 ± 83.98 mm and
218.07 ± 45.77 mm, respectively. These were not significantly different (P>0.05).

However, the comparison between the CG and FBTG after four weeks found that means
and standard deviations were 241.26 ± 65.96 and 174.21 ± 26.80 mm, respectively,
which was significantly different (P<0.05). This is shown in Table 5 and Figure 4.

**Table 5**

**Figure 4**

The main purpose of the study was to compare the balancing abilities in terms of
dynamic postural control and postural stability in those who wear high-heeled shoes.
There were 19 participants (three of the original 22 participants were excluded) in the
study, which included the Control Group (CG, n = 9) and Functional Balance Training
Group (FBTG, n = 10). The ages of the participants in both groups were from 20 to 22
years, and they all had histories of wearing high heels measuring 5 cm or more for at
least 20 hours a week. The functional balance training group trained for three days each
week for four weeks.

The study revealed that the FBTG was significantly better than the CG in terms
of dynamic postural control, which is the result of the composite reach distance of both
legs and the postural stability that measures the sway paths after the training period.

Previous studies have reported that functional balance training has beneficial
effects that may prove to be an effective means of proprioceptive rehabilitation and may
therefore be an effective tool in reducing the epidemiology of ankle sprains in sports
(Azeem & Zutshi, 2017). Baltich, Emery, Stefanyshyn, and Nigg (2014) found that
following functional balance training programs for eight weeks can reduce the intrinsic
risk factors for running injuries and the resulting injury rates in novice runners (Baltich
*et al.*, 2014). Functional balance training involves learning patterns of skilled body
movements that simultaneously require movement and production of stabilization forces. Essentially, one part of the body is in motion while another is held immobile (Potach & Chu, 2000). Dynamic postural control, which is the result of composite reach distance for both legs, represents the body's ability to maintain the center of mass within the base of support (Winter, Patla, & Frank, 1990) while the body is moving in different directions, and this program uses exercises that control the movement of the head, body, and extremities in all planes of motion. The dynamic postural control can be developed by practicing balance training that improves muscular strength, range of motion, neural control of movements, and psychological factors through areas of the central nervous system such as the visual, vestibular, and neurosensory systems, and sensations of the joints (proprioception) (Wang, Li, Xu, & Hong, 2008).

Postural stability, which measures the sway paths, decreased from the baseline, showing that the center of gravity is in alignment with the base of support and the participants have automatic adjustments that they can use to return the body to alignment to prevent falls. Functional balance training should also include protocols that require the body to respond to varied perturbations and exercises to reinforce the control movements of the head, body, and extremities, triggering a reaction that enhances stability. The alteration in the spatial locations of the data points for the centers of pressure may indicate a more optimally functioning sensorimotor system (Mettler, Chinn, Saliba, McKeon, & Hertel, 2015). Exercises should be executed in all planes of motion, keeping in mind the sensory processes that provide the body with information. This exercise shows improved postural stability through shifts away from the center of balance with a return to stability. The findings of this study are similar to those of Rozzi et al. (1999), who reports that balance training appears to indicate that four weeks is a
sufficient amount of time in which to develop the reflex muscular activation patterns that are necessary for the maintenance of posture and balance (Rozzi et al., 1999).

This study of functional balance in relation to dynamic postural control supports the recent study (Michell et al., 2006) showing that dynamic postural control and postural stability can be developed by practicing functional balance, and that this helps to prevent slipping and ankle sprains (Azeem & Zutshi, 2017). It can, then, be recommended that those who wear high-heeled shoes follow this program on a daily basis, doing the training on their own since it is not complicated. However to confirm the beneficial effects of the practice of functional balance training for those who wear high-heeled shoes, further studies should be undertaken using high quality equipment to investigate the effects of functional balance training on ankle instability.

4. Conclusions

The study concludes that functional balance training for four weeks leads to improved balancing abilities (dynamic postural control and postural stability) among those who wear high-heeled shoes. These results may help to prevent the occurrence of slipping and ankle sprains in people who wear high heels.

Acknowledgments

Thank you to the Faculty of Sports Science for providing the tools for this research and a place for the data collection. We wish also to thank all the participants who devoted their time to helping us complete the research successfully.

References


Clagg, S., Paterno, M. V., Hewett, T. E., & Schmitt, L. C. (2015). Performance on the modified star excursion balance test at the time of return to sport following...


Figure 1. The modified Star Excursion Balance Test (mSEBT) with three reach directions labeled in reference to the right stance foot.
Figure 2. Measurement arrangement of the provocation test, where the motion of the PosturoMed® device is obtained by the measurement unit and locked by the provocation unit.
Figure 3. Means and standard deviations of the dynamic postural control test results for participants in the control group (CG) and functional balance training group (FBTG) after four weeks.

* The difference between CG and FBTG after 4 weeks was statistically significant at P<0.05.
**Figure 4.** Means and standard deviations of sway path test results for participants in the control group (CG) and functional balance training group (FBTG) at baseline and after four weeks.

* The difference between CG and FBTG after 4 weeks was statistically significant at $p<0.05$. 

![Sway path (mm)](image_url)
Table 1. Functional balance training program.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic: side-to-side shuttle, high knee skipping, light running 1 minute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static stretch: groin, hamstrings, quadriceps, calves (TA tendon) (30 second/each),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>buttock kicks 2 minute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic stretch: leg swings (side) - 30 second/side, leg swings (front &amp; back), 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>second/direction 2 minute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunges: forward and backward (reps 10/side)</td>
<td>Curtsy lunges (reps 10/side)</td>
<td>Clock lunges (reps 5/side)</td>
<td>Lunge forward onto BOSU ball and backwards off of BOSU ball (reps 20/side)</td>
</tr>
<tr>
<td>Squats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squats (reps 10)</td>
<td>Bipedal, chair touch (reps 10)</td>
<td>Bipedal on BOSU, ball facing upwards (reps 10)</td>
<td>Single leg (reps 10/side)</td>
</tr>
<tr>
<td>Hop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hop on the step bipedal (reps 5)</td>
<td>Hop on the step single leg hop (reps 3/side)</td>
<td>Hop on to BOSU: Bipedal, ball facing upwards (reps 10)</td>
<td>Hop on to BOSU: Bipedal, ball facing upwards (reps 15)</td>
</tr>
<tr>
<td>Jump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical jump (reps)</td>
<td>Lateral jump</td>
<td>Star jump (reps)</td>
<td>Star jump: left to right</td>
</tr>
</tbody>
</table>
Wobble board training protocol

Double leg stance on wobble board with open eyes (15 second) and closed [Open eyes (25 second)/Closed eyes (15 second)]

Single leg stance on wobble board with eyes open and closed (15 second) and closed [Open eyes (25 second)/Closed eyes (5 second)]

Static stretch: groin, hamstrings, quadriceps, calves (TA tendon) (30 second/each), buttock kicks 2 minute

Dynamic stretch: leg swings (side) - 30 second/side, leg swings (front & back), 30 second/direction 2 minute

Frequency: 3 days per week, Rest: 30 second during set and 1 minute during movement.

reps = repetitions

Modified from Azeem & Zutshi, 2017; Baltich et al., 2014; Michell et al., 2006.
Table 2. The means and standard deviations (Mean ± SD) of the characteristics of the participants.

<table>
<thead>
<tr>
<th>Variables</th>
<th>CG</th>
<th>FBTG</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>21.36 ± 0.67</td>
<td>21 ± 0.77</td>
<td>0.068</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>160.59 ± 5.13</td>
<td>159 ± 4.04</td>
<td>0.260</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>50.84 ± 4.61</td>
<td>51.21 ± 7.33</td>
<td>0.495</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>19.69 ± 1.86</td>
<td>20.18 ± 3.15</td>
<td>0.661</td>
</tr>
</tbody>
</table>

CG = control group; FBTG = functional balance training group.
Table 3. The means and standard deviations of the composite reach distances (%) for the participants in the control group (CG) and functional balance training group (FBTG) are shown at baseline.

<table>
<thead>
<tr>
<th>Reach distance</th>
<th>CG Left side</th>
<th>CG Right side</th>
<th>FBTG Left side</th>
<th>FBTG Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>52.17 ± 5.37</td>
<td>52.28 ± 5.74</td>
<td>54.65 ± 4.58</td>
<td>53.84 ± 3.73</td>
</tr>
<tr>
<td>Posteromedial</td>
<td>67.96 ± 7.95</td>
<td>68.25 ± 9.41</td>
<td>70.29 ± 7.97</td>
<td>71.00 ± 5.29</td>
</tr>
<tr>
<td>Posterolateral</td>
<td>57.97 ± 9.14</td>
<td>59.98 ± 10.28</td>
<td>59.84 ± 7.73</td>
<td>59.81 ± 9.09</td>
</tr>
<tr>
<td>Leg length</td>
<td>83.82 ± 4.07</td>
<td>83.45 ± 4.18</td>
<td>80.91 ± 3.24</td>
<td>81.00 ± 3.22</td>
</tr>
<tr>
<td>Composite*</td>
<td>71.15 ± 10.21</td>
<td>72.49 ± 11.69</td>
<td>76.12 ± 6.64</td>
<td>76.05 ± 6.83</td>
</tr>
</tbody>
</table>

* Sum of the 3 reach distances (anterior, posteromedial, and posterolateral), divided by 3 times limb length, multiplied by 100.
Table 4. The means and standard deviations of the composite reach distances (%) for the participants in the control group (CG) and functional balance training group (FBTG) after four weeks.

<table>
<thead>
<tr>
<th>Reach distance</th>
<th>CG Left side</th>
<th>CG Right side</th>
<th>FBTG Left side</th>
<th>FBTG Right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>52.60 ± 5.38</td>
<td>52.12 ± 5.22</td>
<td>63.73 ± 8.32</td>
<td>61.73 ± 8.32</td>
</tr>
<tr>
<td>Posteromedial</td>
<td>68.01 ± 6.45</td>
<td>67.01 ± 9.50</td>
<td>85.04 ± 8.23</td>
<td>82.70 ± 6.13</td>
</tr>
<tr>
<td>Posterolateral</td>
<td>55.56 ± 11.81</td>
<td>56.36 ± 11.17</td>
<td>71.10 ± 10.35</td>
<td>73.15 ± 7.93</td>
</tr>
<tr>
<td>Leg length</td>
<td>82.78 ± 4.24</td>
<td>82.56 ± 3.91</td>
<td>81.10 ± 3.35</td>
<td>81.20 ± 3.33</td>
</tr>
<tr>
<td>Composite</td>
<td>71.32 ± 11.07</td>
<td>71.22 ± 11.07</td>
<td>90.35 ± 7.94</td>
<td>89.39 ± 8.37</td>
</tr>
</tbody>
</table>

* ** The difference between CG and FBTG was statistically significant at P<0.05.
Table 5. The means and standard deviations of the sway paths from the provocation test (mm) for the control group (CG) and functional balance training group (FBTG) at baseline and after four weeks.

<table>
<thead>
<tr>
<th>Variables</th>
<th>CG</th>
<th>FBTG</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>237.57 ± 83.98</td>
<td>218.07 ± 45.77</td>
<td>0.670</td>
</tr>
<tr>
<td>After 4 weeks</td>
<td>241.26 ± 65.96</td>
<td>174.21 ± 26.80</td>
<td>0.005*</td>
</tr>
</tbody>
</table>

* The difference between CG and FBTG was statistically significant at P<0.05.